Metamath Proof Explorer


Theorem pczdvds

Description: Defining property of the prime count function. (Contributed by Mario Carneiro, 9-Sep-2014)

Ref Expression
Assertion pczdvds PNN0PPpCntNN

Proof

Step Hyp Ref Expression
1 eqid supn0|PnN<=supn0|PnN<
2 1 pczpre PNN0PpCntN=supn0|PnN<
3 2 oveq2d PNN0PPpCntN=Psupn0|PnN<
4 prmuz2 PP2
5 eqid n0|PnN=n0|PnN
6 5 1 pcprecl P2NN0supn0|PnN<0Psupn0|PnN<N
7 6 simprd P2NN0Psupn0|PnN<N
8 4 7 sylan PNN0Psupn0|PnN<N
9 3 8 eqbrtrd PNN0PPpCntNN