Metamath Proof Explorer


Theorem pfxcl

Description: Closure of the prefix extractor. (Contributed by AV, 2-May-2020)

Ref Expression
Assertion pfxcl SWordASprefixLWordA

Proof

Step Hyp Ref Expression
1 eleq1 SprefixL=SprefixLWordAWordA
2 n0 SprefixLxxSprefixL
3 df-pfx prefix=sV,l0ssubstr0l
4 3 elmpocl2 xSprefixLL0
5 4 exlimiv xxSprefixLL0
6 2 5 sylbi SprefixLL0
7 pfxval SWordAL0SprefixL=Ssubstr0L
8 swrdcl SWordASsubstr0LWordA
9 8 adantr SWordAL0Ssubstr0LWordA
10 7 9 eqeltrd SWordAL0SprefixLWordA
11 6 10 sylan2 SWordASprefixLSprefixLWordA
12 wrd0 WordA
13 12 a1i SWordAWordA
14 1 11 13 pm2.61ne SWordASprefixLWordA