Metamath Proof Explorer


Theorem pgjsgr

Description: A Petersen graph is a simple graph. (Contributed by AV, 10-Nov-2025)

Ref Expression
Assertion pgjsgr Could not format assertion : No typesetting found for |- ( 5 gPetersenGr 2 ) e. USGraph with typecode |-

Proof

Step Hyp Ref Expression
1 5eluz3 5 3
2 pglem 2 1 ..^ 5 2
3 gpgusgra Could not format ( ( 5 e. ( ZZ>= ` 3 ) /\ 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) -> ( 5 gPetersenGr 2 ) e. USGraph ) : No typesetting found for |- ( ( 5 e. ( ZZ>= ` 3 ) /\ 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) -> ( 5 gPetersenGr 2 ) e. USGraph ) with typecode |-
4 1 2 3 mp2an Could not format ( 5 gPetersenGr 2 ) e. USGraph : No typesetting found for |- ( 5 gPetersenGr 2 ) e. USGraph with typecode |-