Metamath Proof Explorer


Theorem 5eluz3

Description: 5 is an integer greater than or equal to 3. (Contributed by AV, 7-Sep-2025)

Ref Expression
Assertion 5eluz3 5 3

Proof

Step Hyp Ref Expression
1 3z 3
2 5nn 5
3 2 nnzi 5
4 3re 3
5 5re 5
6 3lt5 3 < 5
7 4 5 6 ltleii 3 5
8 eluz2 5 3 3 5 3 5
9 1 3 7 8 mpbir3an 5 3