Metamath Proof Explorer


Theorem 5eluz3

Description: 5 is an integer greater than or equal to 3. (Contributed by AV, 7-Sep-2025)

Ref Expression
Assertion 5eluz3
|- 5 e. ( ZZ>= ` 3 )

Proof

Step Hyp Ref Expression
1 3z
 |-  3 e. ZZ
2 5nn
 |-  5 e. NN
3 2 nnzi
 |-  5 e. ZZ
4 3re
 |-  3 e. RR
5 5re
 |-  5 e. RR
6 3lt5
 |-  3 < 5
7 4 5 6 ltleii
 |-  3 <_ 5
8 eluz2
 |-  ( 5 e. ( ZZ>= ` 3 ) <-> ( 3 e. ZZ /\ 5 e. ZZ /\ 3 <_ 5 ) )
9 1 3 7 8 mpbir3an
 |-  5 e. ( ZZ>= ` 3 )