Metamath Proof Explorer


Theorem 5eluz3

Description: 5 is an integer greater than or equal to 3. (Contributed by AV, 7-Sep-2025)

Ref Expression
Assertion 5eluz3 5 ∈ ( ℤ ‘ 3 )

Proof

Step Hyp Ref Expression
1 3z 3 ∈ ℤ
2 5nn 5 ∈ ℕ
3 2 nnzi 5 ∈ ℤ
4 3re 3 ∈ ℝ
5 5re 5 ∈ ℝ
6 3lt5 3 < 5
7 4 5 6 ltleii 3 ≤ 5
8 eluz2 ( 5 ∈ ( ℤ ‘ 3 ) ↔ ( 3 ∈ ℤ ∧ 5 ∈ ℤ ∧ 3 ≤ 5 ) )
9 1 3 7 8 mpbir3an 5 ∈ ( ℤ ‘ 3 )