Metamath Proof Explorer
Table of Contents - 5.5.3. Supremum and infimum on the extended reals
- xrsupexmnf
- xrinfmexpnf
- xrsupsslem
- xrinfmsslem
- xrsupss
- xrinfmss
- xrinfmss2
- xrub
- supxr
- supxr2
- supxrcl
- supxrun
- supxrmnf
- supxrpnf
- supxrunb1
- supxrunb2
- supxrbnd1
- supxrbnd2
- xrsup0
- supxrub
- supxrlub
- supxrleub
- supxrre
- supxrbnd
- supxrgtmnf
- supxrre1
- supxrre2
- supxrss
- infxrcl
- infxrlb
- infxrgelb
- infxrre
- infxrmnf
- xrinf0
- infxrss
- reltre
- rpltrp
- reltxrnmnf
- infmremnf
- infmrp1