Metamath Proof Explorer


Theorem fzen

Description: A shifted finite set of sequential integers is equinumerous to the original set. (Contributed by Paul Chapman, 11-Apr-2009)

Ref Expression
Assertion fzen MNKMNM+KN+K

Proof

Step Hyp Ref Expression
1 ovexd MNKMNV
2 ovexd MNKM+KN+KV
3 elfz1 MNkMNkMkkN
4 3 biimpd MNkMNkMkkN
5 4 3adant3 MNKkMNkMkkN
6 zaddcl kKk+K
7 6 expcom Kkk+K
8 7 3ad2ant3 MNKkk+K
9 8 adantrd MNKkMkkNk+K
10 zre MM
11 zre kk
12 zre KK
13 leadd1 MkKMkM+Kk+K
14 10 11 12 13 syl3an MkKMkM+Kk+K
15 14 biimpd MkKMkM+Kk+K
16 15 adantrd MkKMkkNM+Kk+K
17 16 3com23 MKkMkkNM+Kk+K
18 17 3expia MKkMkkNM+Kk+K
19 18 impd MKkMkkNM+Kk+K
20 19 3adant2 MNKkMkkNM+Kk+K
21 zre NN
22 leadd1 kNKkNk+KN+K
23 11 21 12 22 syl3an kNKkNk+KN+K
24 23 biimpd kNKkNk+KN+K
25 24 adantld kNKMkkNk+KN+K
26 25 3coml NKkMkkNk+KN+K
27 26 3expia NKkMkkNk+KN+K
28 27 impd NKkMkkNk+KN+K
29 28 3adant1 MNKkMkkNk+KN+K
30 9 20 29 3jcad MNKkMkkNk+KM+Kk+Kk+KN+K
31 zaddcl MKM+K
32 31 3adant2 MNKM+K
33 zaddcl NKN+K
34 33 3adant1 MNKN+K
35 elfz1 M+KN+Kk+KM+KN+Kk+KM+Kk+Kk+KN+K
36 32 34 35 syl2anc MNKk+KM+KN+Kk+KM+Kk+Kk+KN+K
37 36 biimprd MNKk+KM+Kk+Kk+KN+Kk+KM+KN+K
38 30 37 syldc kMkkNMNKk+KM+KN+K
39 38 3impb kMkkNMNKk+KM+KN+K
40 39 com12 MNKkMkkNk+KM+KN+K
41 5 40 syld MNKkMNk+KM+KN+K
42 elfz1 M+KN+KmM+KN+KmM+KmmN+K
43 32 34 42 syl2anc MNKmM+KN+KmM+KmmN+K
44 43 biimpd MNKmM+KN+KmM+KmmN+K
45 zsubcl mKmK
46 45 expcom KmmK
47 46 3ad2ant3 MNKmmK
48 47 adantrd MNKmM+KmmN+KmK
49 zre mm
50 leaddsub MKmM+KmMmK
51 10 12 49 50 syl3an MKmM+KmMmK
52 51 biimpd MKmM+KmMmK
53 52 adantrd MKmM+KmmN+KMmK
54 53 3expia MKmM+KmmN+KMmK
55 54 impd MKmM+KmmN+KMmK
56 55 3adant2 MNKmM+KmmN+KMmK
57 lesubadd mKNmKNmN+K
58 49 12 21 57 syl3an mKNmKNmN+K
59 58 biimprd mKNmN+KmKN
60 59 adantld mKNM+KmmN+KmKN
61 60 3coml KNmM+KmmN+KmKN
62 61 3expia KNmM+KmmN+KmKN
63 62 impd KNmM+KmmN+KmKN
64 63 ancoms NKmM+KmmN+KmKN
65 64 3adant1 MNKmM+KmmN+KmKN
66 48 56 65 3jcad MNKmM+KmmN+KmKMmKmKN
67 elfz1 MNmKMNmKMmKmKN
68 67 biimprd MNmKMmKmKNmKMN
69 68 3adant3 MNKmKMmKmKNmKMN
70 66 69 syldc mM+KmmN+KMNKmKMN
71 70 3impb mM+KmmN+KMNKmKMN
72 71 com12 MNKmM+KmmN+KmKMN
73 44 72 syld MNKmM+KN+KmKMN
74 5 imp MNKkMNkMkkN
75 74 simp1d MNKkMNk
76 75 ex MNKkMNk
77 44 imp MNKmM+KN+KmM+KmmN+K
78 77 simp1d MNKmM+KN+Km
79 78 ex MNKmM+KN+Km
80 zcn mm
81 zcn KK
82 zcn kk
83 subadd mKkmK=kK+k=m
84 eqcom mK=kk=mK
85 eqcom K+k=mm=K+k
86 83 84 85 3bitr3g mKkk=mKm=K+k
87 addcom KkK+k=k+K
88 87 3adant1 mKkK+k=k+K
89 88 eqeq2d mKkm=K+km=k+K
90 86 89 bitrd mKkk=mKm=k+K
91 80 81 82 90 syl3an mKkk=mKm=k+K
92 91 3coml Kkmk=mKm=k+K
93 92 3expib Kkmk=mKm=k+K
94 93 3ad2ant3 MNKkmk=mKm=k+K
95 76 79 94 syl2and MNKkMNmM+KN+Kk=mKm=k+K
96 1 2 41 73 95 en3d MNKMNM+KN+K