Metamath Proof Explorer


Theorem fzadd2

Description: Membership of a sum in a finite interval of integers. (Contributed by Jeff Madsen, 17-Jun-2010)

Ref Expression
Assertion fzadd2 MNOPJMNKOPJ+KM+ON+P

Proof

Step Hyp Ref Expression
1 elfz1 MNJMNJMJJN
2 elfz1 OPKOPKOKKP
3 1 2 bi2anan9 MNOPJMNKOPJMJJNKOKKP
4 an6 JMJJNKOKKPJKMJOKJNKP
5 zre MM
6 zre OO
7 5 6 anim12i MOMO
8 zre JJ
9 zre KK
10 8 9 anim12i JKJK
11 le2add MOJKMJOKM+OJ+K
12 7 10 11 syl2an MOJKMJOKM+OJ+K
13 12 impr MOJKMJOKM+OJ+K
14 13 3adantr3 MOJKMJOKJNKPM+OJ+K
15 14 adantlr MONPJKMJOKJNKPM+OJ+K
16 zre NN
17 zre PP
18 16 17 anim12i NPNP
19 le2add JKNPJNKPJ+KN+P
20 10 18 19 syl2anr NPJKJNKPJ+KN+P
21 20 impr NPJKJNKPJ+KN+P
22 21 3adantr2 NPJKMJOKJNKPJ+KN+P
23 22 adantll MONPJKMJOKJNKPJ+KN+P
24 zaddcl JKJ+K
25 zaddcl MOM+O
26 zaddcl NPN+P
27 elfz J+KM+ON+PJ+KM+ON+PM+OJ+KJ+KN+P
28 24 25 26 27 syl3an JKMONPJ+KM+ON+PM+OJ+KJ+KN+P
29 28 3expb JKMONPJ+KM+ON+PM+OJ+KJ+KN+P
30 29 ancoms MONPJKJ+KM+ON+PM+OJ+KJ+KN+P
31 30 3ad2antr1 MONPJKMJOKJNKPJ+KM+ON+PM+OJ+KJ+KN+P
32 15 23 31 mpbir2and MONPJKMJOKJNKPJ+KM+ON+P
33 32 ex MONPJKMJOKJNKPJ+KM+ON+P
34 33 an4s MNOPJKMJOKJNKPJ+KM+ON+P
35 4 34 biimtrid MNOPJMJJNKOKKPJ+KM+ON+P
36 3 35 sylbid MNOPJMNKOPJ+KM+ON+P