Metamath Proof Explorer


Theorem fz01en

Description: 0-based and 1-based finite sets of sequential integers are equinumerous. (Contributed by Paul Chapman, 11-Apr-2009)

Ref Expression
Assertion fz01en N0N11N

Proof

Step Hyp Ref Expression
1 peano2zm NN1
2 0z 0
3 1z 1
4 fzen 0N110N10+1N-1+1
5 2 3 4 mp3an13 N10N10+1N-1+1
6 1 5 syl N0N10+1N-1+1
7 0p1e1 0+1=1
8 7 a1i N0+1=1
9 zcn NN
10 ax-1cn 1
11 npcan N1N-1+1=N
12 9 10 11 sylancl NN-1+1=N
13 8 12 oveq12d N0+1N-1+1=1N
14 6 13 breqtrd N0N11N