Metamath Proof Explorer


Theorem 0nelfz1

Description: 0 is not an element of a finite interval of integers starting at 1. (Contributed by AV, 27-Aug-2020)

Ref Expression
Assertion 0nelfz1 01N

Proof

Step Hyp Ref Expression
1 0lt1 0<1
2 0re 0
3 1re 1
4 2 3 ltnlei 0<1¬10
5 1 4 mpbi ¬10
6 5 intnanr ¬100N
7 6 intnan ¬1N0100N
8 df-nel 01N¬01N
9 elfz2 01N1N0100N
10 8 9 xchbinx 01N¬1N0100N
11 7 10 mpbir 01N