Metamath Proof Explorer


Theorem gpgusgra

Description: The generalized Petersen graph GPG(N,K) is a simple graph. (Contributed by AV, 27-Aug-2025)

Ref Expression
Assertion gpgusgra Could not format assertion : No typesetting found for |- ( ( N e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> ( N gPetersenGr K ) e. USGraph ) with typecode |-

Proof

Step Hyp Ref Expression
1 f1oi I e 𝒫 0 1 × 0 ..^ N | x 0 ..^ N e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + K mod N : e 𝒫 0 1 × 0 ..^ N | x 0 ..^ N e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + K mod N 1-1 onto e 𝒫 0 1 × 0 ..^ N | x 0 ..^ N e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + K mod N
2 f1of1 I e 𝒫 0 1 × 0 ..^ N | x 0 ..^ N e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + K mod N : e 𝒫 0 1 × 0 ..^ N | x 0 ..^ N e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + K mod N 1-1 onto e 𝒫 0 1 × 0 ..^ N | x 0 ..^ N e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + K mod N I e 𝒫 0 1 × 0 ..^ N | x 0 ..^ N e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + K mod N : e 𝒫 0 1 × 0 ..^ N | x 0 ..^ N e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + K mod N 1-1 e 𝒫 0 1 × 0 ..^ N | x 0 ..^ N e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + K mod N
3 1 2 mp1i N 3 K 1 ..^ N 2 I e 𝒫 0 1 × 0 ..^ N | x 0 ..^ N e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + K mod N : e 𝒫 0 1 × 0 ..^ N | x 0 ..^ N e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + K mod N 1-1 e 𝒫 0 1 × 0 ..^ N | x 0 ..^ N e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + K mod N
4 eqid 1 ..^ N 2 = 1 ..^ N 2
5 eqid 0 ..^ N = 0 ..^ N
6 4 5 gpgusgralem N 3 K 1 ..^ N 2 e 𝒫 0 1 × 0 ..^ N | x 0 ..^ N e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + K mod N p 𝒫 0 1 × 0 ..^ N | p = 2
7 f1ss I e 𝒫 0 1 × 0 ..^ N | x 0 ..^ N e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + K mod N : e 𝒫 0 1 × 0 ..^ N | x 0 ..^ N e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + K mod N 1-1 e 𝒫 0 1 × 0 ..^ N | x 0 ..^ N e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + K mod N e 𝒫 0 1 × 0 ..^ N | x 0 ..^ N e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + K mod N p 𝒫 0 1 × 0 ..^ N | p = 2 I e 𝒫 0 1 × 0 ..^ N | x 0 ..^ N e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + K mod N : e 𝒫 0 1 × 0 ..^ N | x 0 ..^ N e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + K mod N 1-1 p 𝒫 0 1 × 0 ..^ N | p = 2
8 3 6 7 syl2anc N 3 K 1 ..^ N 2 I e 𝒫 0 1 × 0 ..^ N | x 0 ..^ N e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + K mod N : e 𝒫 0 1 × 0 ..^ N | x 0 ..^ N e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + K mod N 1-1 p 𝒫 0 1 × 0 ..^ N | p = 2
9 eluzge3nn N 3 N
10 4 5 gpgiedg Could not format ( ( N e. NN /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> ( iEdg ` ( N gPetersenGr K ) ) = ( _I |` { e e. ~P ( { 0 , 1 } X. ( 0 ..^ N ) ) | E. x e. ( 0 ..^ N ) ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } ) ) : No typesetting found for |- ( ( N e. NN /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> ( iEdg ` ( N gPetersenGr K ) ) = ( _I |` { e e. ~P ( { 0 , 1 } X. ( 0 ..^ N ) ) | E. x e. ( 0 ..^ N ) ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } ) ) with typecode |-
11 9 10 sylan Could not format ( ( N e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> ( iEdg ` ( N gPetersenGr K ) ) = ( _I |` { e e. ~P ( { 0 , 1 } X. ( 0 ..^ N ) ) | E. x e. ( 0 ..^ N ) ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } ) ) : No typesetting found for |- ( ( N e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> ( iEdg ` ( N gPetersenGr K ) ) = ( _I |` { e e. ~P ( { 0 , 1 } X. ( 0 ..^ N ) ) | E. x e. ( 0 ..^ N ) ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } ) ) with typecode |-
12 11 dmeqd Could not format ( ( N e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> dom ( iEdg ` ( N gPetersenGr K ) ) = dom ( _I |` { e e. ~P ( { 0 , 1 } X. ( 0 ..^ N ) ) | E. x e. ( 0 ..^ N ) ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } ) ) : No typesetting found for |- ( ( N e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> dom ( iEdg ` ( N gPetersenGr K ) ) = dom ( _I |` { e e. ~P ( { 0 , 1 } X. ( 0 ..^ N ) ) | E. x e. ( 0 ..^ N ) ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } ) ) with typecode |-
13 dmresi dom I e 𝒫 0 1 × 0 ..^ N | x 0 ..^ N e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + K mod N = e 𝒫 0 1 × 0 ..^ N | x 0 ..^ N e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + K mod N
14 12 13 eqtrdi Could not format ( ( N e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> dom ( iEdg ` ( N gPetersenGr K ) ) = { e e. ~P ( { 0 , 1 } X. ( 0 ..^ N ) ) | E. x e. ( 0 ..^ N ) ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } ) : No typesetting found for |- ( ( N e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> dom ( iEdg ` ( N gPetersenGr K ) ) = { e e. ~P ( { 0 , 1 } X. ( 0 ..^ N ) ) | E. x e. ( 0 ..^ N ) ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } ) with typecode |-
15 4 5 gpgvtx Could not format ( ( N e. NN /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> ( Vtx ` ( N gPetersenGr K ) ) = ( { 0 , 1 } X. ( 0 ..^ N ) ) ) : No typesetting found for |- ( ( N e. NN /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> ( Vtx ` ( N gPetersenGr K ) ) = ( { 0 , 1 } X. ( 0 ..^ N ) ) ) with typecode |-
16 9 15 sylan Could not format ( ( N e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> ( Vtx ` ( N gPetersenGr K ) ) = ( { 0 , 1 } X. ( 0 ..^ N ) ) ) : No typesetting found for |- ( ( N e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> ( Vtx ` ( N gPetersenGr K ) ) = ( { 0 , 1 } X. ( 0 ..^ N ) ) ) with typecode |-
17 16 pweqd Could not format ( ( N e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> ~P ( Vtx ` ( N gPetersenGr K ) ) = ~P ( { 0 , 1 } X. ( 0 ..^ N ) ) ) : No typesetting found for |- ( ( N e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> ~P ( Vtx ` ( N gPetersenGr K ) ) = ~P ( { 0 , 1 } X. ( 0 ..^ N ) ) ) with typecode |-
18 17 rabeqdv Could not format ( ( N e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> { p e. ~P ( Vtx ` ( N gPetersenGr K ) ) | ( # ` p ) = 2 } = { p e. ~P ( { 0 , 1 } X. ( 0 ..^ N ) ) | ( # ` p ) = 2 } ) : No typesetting found for |- ( ( N e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> { p e. ~P ( Vtx ` ( N gPetersenGr K ) ) | ( # ` p ) = 2 } = { p e. ~P ( { 0 , 1 } X. ( 0 ..^ N ) ) | ( # ` p ) = 2 } ) with typecode |-
19 11 14 18 f1eq123d Could not format ( ( N e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> ( ( iEdg ` ( N gPetersenGr K ) ) : dom ( iEdg ` ( N gPetersenGr K ) ) -1-1-> { p e. ~P ( Vtx ` ( N gPetersenGr K ) ) | ( # ` p ) = 2 } <-> ( _I |` { e e. ~P ( { 0 , 1 } X. ( 0 ..^ N ) ) | E. x e. ( 0 ..^ N ) ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } ) : { e e. ~P ( { 0 , 1 } X. ( 0 ..^ N ) ) | E. x e. ( 0 ..^ N ) ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } -1-1-> { p e. ~P ( { 0 , 1 } X. ( 0 ..^ N ) ) | ( # ` p ) = 2 } ) ) : No typesetting found for |- ( ( N e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> ( ( iEdg ` ( N gPetersenGr K ) ) : dom ( iEdg ` ( N gPetersenGr K ) ) -1-1-> { p e. ~P ( Vtx ` ( N gPetersenGr K ) ) | ( # ` p ) = 2 } <-> ( _I |` { e e. ~P ( { 0 , 1 } X. ( 0 ..^ N ) ) | E. x e. ( 0 ..^ N ) ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } ) : { e e. ~P ( { 0 , 1 } X. ( 0 ..^ N ) ) | E. x e. ( 0 ..^ N ) ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } -1-1-> { p e. ~P ( { 0 , 1 } X. ( 0 ..^ N ) ) | ( # ` p ) = 2 } ) ) with typecode |-
20 8 19 mpbird Could not format ( ( N e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> ( iEdg ` ( N gPetersenGr K ) ) : dom ( iEdg ` ( N gPetersenGr K ) ) -1-1-> { p e. ~P ( Vtx ` ( N gPetersenGr K ) ) | ( # ` p ) = 2 } ) : No typesetting found for |- ( ( N e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> ( iEdg ` ( N gPetersenGr K ) ) : dom ( iEdg ` ( N gPetersenGr K ) ) -1-1-> { p e. ~P ( Vtx ` ( N gPetersenGr K ) ) | ( # ` p ) = 2 } ) with typecode |-
21 ovex Could not format ( N gPetersenGr K ) e. _V : No typesetting found for |- ( N gPetersenGr K ) e. _V with typecode |-
22 eqid Could not format ( Vtx ` ( N gPetersenGr K ) ) = ( Vtx ` ( N gPetersenGr K ) ) : No typesetting found for |- ( Vtx ` ( N gPetersenGr K ) ) = ( Vtx ` ( N gPetersenGr K ) ) with typecode |-
23 eqid Could not format ( iEdg ` ( N gPetersenGr K ) ) = ( iEdg ` ( N gPetersenGr K ) ) : No typesetting found for |- ( iEdg ` ( N gPetersenGr K ) ) = ( iEdg ` ( N gPetersenGr K ) ) with typecode |-
24 22 23 isusgrs Could not format ( ( N gPetersenGr K ) e. _V -> ( ( N gPetersenGr K ) e. USGraph <-> ( iEdg ` ( N gPetersenGr K ) ) : dom ( iEdg ` ( N gPetersenGr K ) ) -1-1-> { p e. ~P ( Vtx ` ( N gPetersenGr K ) ) | ( # ` p ) = 2 } ) ) : No typesetting found for |- ( ( N gPetersenGr K ) e. _V -> ( ( N gPetersenGr K ) e. USGraph <-> ( iEdg ` ( N gPetersenGr K ) ) : dom ( iEdg ` ( N gPetersenGr K ) ) -1-1-> { p e. ~P ( Vtx ` ( N gPetersenGr K ) ) | ( # ` p ) = 2 } ) ) with typecode |-
25 21 24 mp1i Could not format ( ( N e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> ( ( N gPetersenGr K ) e. USGraph <-> ( iEdg ` ( N gPetersenGr K ) ) : dom ( iEdg ` ( N gPetersenGr K ) ) -1-1-> { p e. ~P ( Vtx ` ( N gPetersenGr K ) ) | ( # ` p ) = 2 } ) ) : No typesetting found for |- ( ( N e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> ( ( N gPetersenGr K ) e. USGraph <-> ( iEdg ` ( N gPetersenGr K ) ) : dom ( iEdg ` ( N gPetersenGr K ) ) -1-1-> { p e. ~P ( Vtx ` ( N gPetersenGr K ) ) | ( # ` p ) = 2 } ) ) with typecode |-
26 20 25 mpbird Could not format ( ( N e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> ( N gPetersenGr K ) e. USGraph ) : No typesetting found for |- ( ( N e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> ( N gPetersenGr K ) e. USGraph ) with typecode |-