Metamath Proof Explorer


Theorem gpgusgralem

Description: Lemma for gpgusgra . (Contributed by AV, 27-Aug-2025) (Proof shortened by AV, 6-Sep-2025)

Ref Expression
Hypotheses gpgusgralem.j J = 1 ..^ N 2
gpgusgralem.i I = 0 ..^ N
Assertion gpgusgralem N 3 K J e 𝒫 0 1 × I | x I e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + K mod N p 𝒫 0 1 × I | p = 2

Proof

Step Hyp Ref Expression
1 gpgusgralem.j J = 1 ..^ N 2
2 gpgusgralem.i I = 0 ..^ N
3 uzuzle23 N 3 N 2
4 3 adantr N 3 K J N 2
5 4 adantr N 3 K J e 𝒫 0 1 × I N 2
6 2 eleq2i x I x 0 ..^ N
7 6 biimpi x I x 0 ..^ N
8 p1modne N 2 x 0 ..^ N x + 1 mod N x
9 5 7 8 syl2an N 3 K J e 𝒫 0 1 × I x I x + 1 mod N x
10 9 necomd N 3 K J e 𝒫 0 1 × I x I x x + 1 mod N
11 10 olcd N 3 K J e 𝒫 0 1 × I x I 0 0 x x + 1 mod N
12 0z 0
13 vex x V
14 opthneg 0 x V 0 x 0 x + 1 mod N 0 0 x x + 1 mod N
15 12 13 14 mp2an 0 x 0 x + 1 mod N 0 0 x x + 1 mod N
16 11 15 sylibr N 3 K J e 𝒫 0 1 × I x I 0 x 0 x + 1 mod N
17 opex 0 x V
18 opex 0 x + 1 mod N V
19 hashprg 0 x V 0 x + 1 mod N V 0 x 0 x + 1 mod N 0 x 0 x + 1 mod N = 2
20 17 18 19 mp2an 0 x 0 x + 1 mod N 0 x 0 x + 1 mod N = 2
21 16 20 sylib N 3 K J e 𝒫 0 1 × I x I 0 x 0 x + 1 mod N = 2
22 fveqeq2 e = 0 x 0 x + 1 mod N e = 2 0 x 0 x + 1 mod N = 2
23 21 22 syl5ibrcom N 3 K J e 𝒫 0 1 × I x I e = 0 x 0 x + 1 mod N e = 2
24 0ne1 0 1
25 24 a1i N 3 K J e 𝒫 0 1 × I x I e = 0 x 1 x 0 1
26 25 orcd N 3 K J e 𝒫 0 1 × I x I e = 0 x 1 x 0 1 x x
27 opthneg 0 x V 0 x 1 x 0 1 x x
28 12 13 27 mp2an 0 x 1 x 0 1 x x
29 26 28 sylibr N 3 K J e 𝒫 0 1 × I x I e = 0 x 1 x 0 x 1 x
30 opex 1 x V
31 hashprg 0 x V 1 x V 0 x 1 x 0 x 1 x = 2
32 17 30 31 mp2an 0 x 1 x 0 x 1 x = 2
33 29 32 sylib N 3 K J e 𝒫 0 1 × I x I e = 0 x 1 x 0 x 1 x = 2
34 fveqeq2 e = 0 x 1 x e = 2 0 x 1 x = 2
35 34 adantl N 3 K J e 𝒫 0 1 × I x I e = 0 x 1 x e = 2 0 x 1 x = 2
36 33 35 mpbird N 3 K J e 𝒫 0 1 × I x I e = 0 x 1 x e = 2
37 36 ex N 3 K J e 𝒫 0 1 × I x I e = 0 x 1 x e = 2
38 eluzge3nn N 3 N
39 38 ad3antrrr N 3 K J e 𝒫 0 1 × I x I N
40 elfzo0 x 0 ..^ N x 0 N x < N
41 6 40 bitri x I x 0 N x < N
42 3simpb x 0 N x < N x 0 x < N
43 41 42 sylbi x I x 0 x < N
44 43 adantl N 3 K J e 𝒫 0 1 × I x I x 0 x < N
45 1 eleq2i K J K 1 ..^ N 2
46 elfzo1 K 1 ..^ N 2 K N 2 K < N 2
47 45 46 bitri K J K N 2 K < N 2
48 simpl1 K N 2 K < N 2 N 3 K
49 nnre K K
50 nnre N 2 N 2
51 eluzelre N 3 N
52 49 50 51 3anim123i K N 2 N 3 K N 2 N
53 51 rehalfcld N 3 N 2
54 53 adantl K N 3 N 2
55 eluzelz N 3 N
56 55 adantl K N 3 N
57 eluz2 N 3 3 N 3 N
58 simp2 3 N 3 N N
59 0re 0
60 59 a1i N 3 N 0
61 3re 3
62 61 a1i N 3 N 3
63 zre N N
64 63 adantr N 3 N N
65 3pos 0 < 3
66 59 61 65 ltleii 0 3
67 66 a1i N 3 N 0 3
68 simpr N 3 N 3 N
69 60 62 64 67 68 letrd N 3 N 0 N
70 69 3adant1 3 N 3 N 0 N
71 58 70 jca 3 N 3 N N 0 N
72 elnn0z N 0 N 0 N
73 71 72 sylibr 3 N 3 N N 0
74 57 73 sylbi N 3 N 0
75 2nn 2
76 75 a1i K N 3 2
77 nn0ledivnn N 0 2 N 2 N
78 74 76 77 syl2an2 K N 3 N 2 N
79 54 56 78 3jca K N 3 N 2 N N 2 N
80 79 3adant2 K N 2 N 3 N 2 N N 2 N
81 ceille N 2 N N 2 N N 2 N
82 80 81 syl K N 2 N 3 N 2 N
83 52 82 lelttrdi K N 2 N 3 K < N 2 K < N
84 83 3exp K N 2 N 3 K < N 2 K < N
85 84 com34 K N 2 K < N 2 N 3 K < N
86 85 3imp1 K N 2 K < N 2 N 3 K < N
87 48 86 jca K N 2 K < N 2 N 3 K K < N
88 87 ex K N 2 K < N 2 N 3 K K < N
89 47 88 sylbi K J N 3 K K < N
90 89 impcom N 3 K J K K < N
91 90 adantr N 3 K J e 𝒫 0 1 × I K K < N
92 91 adantr N 3 K J e 𝒫 0 1 × I x I K K < N
93 addmodne N x 0 x < N K K < N x + K mod N x
94 39 44 92 93 syl3anc N 3 K J e 𝒫 0 1 × I x I x + K mod N x
95 94 necomd N 3 K J e 𝒫 0 1 × I x I x x + K mod N
96 95 olcd N 3 K J e 𝒫 0 1 × I x I 1 1 x x + K mod N
97 1z 1
98 opthneg 1 x V 1 x 1 x + K mod N 1 1 x x + K mod N
99 97 13 98 mp2an 1 x 1 x + K mod N 1 1 x x + K mod N
100 96 99 sylibr N 3 K J e 𝒫 0 1 × I x I 1 x 1 x + K mod N
101 opex 1 x + K mod N V
102 hashprg 1 x V 1 x + K mod N V 1 x 1 x + K mod N 1 x 1 x + K mod N = 2
103 30 101 102 mp2an 1 x 1 x + K mod N 1 x 1 x + K mod N = 2
104 100 103 sylib N 3 K J e 𝒫 0 1 × I x I 1 x 1 x + K mod N = 2
105 fveqeq2 e = 1 x 1 x + K mod N e = 2 1 x 1 x + K mod N = 2
106 104 105 syl5ibrcom N 3 K J e 𝒫 0 1 × I x I e = 1 x 1 x + K mod N e = 2
107 23 37 106 3jaod N 3 K J e 𝒫 0 1 × I x I e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + K mod N e = 2
108 107 rexlimdva N 3 K J e 𝒫 0 1 × I x I e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + K mod N e = 2
109 108 ss2rabdv N 3 K J e 𝒫 0 1 × I | x I e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + K mod N e 𝒫 0 1 × I | e = 2
110 fveqeq2 p = e p = 2 e = 2
111 110 cbvrabv p 𝒫 0 1 × I | p = 2 = e 𝒫 0 1 × I | e = 2
112 109 111 sseqtrrdi N 3 K J e 𝒫 0 1 × I | x I e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + K mod N p 𝒫 0 1 × I | p = 2