| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gpgusgralem.j |
⊢ 𝐽 = ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) |
| 2 |
|
gpgusgralem.i |
⊢ 𝐼 = ( 0 ..^ 𝑁 ) |
| 3 |
|
uzuzle23 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) |
| 4 |
3
|
adantr |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) → 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) |
| 5 |
4
|
adantr |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ) → 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) |
| 6 |
2
|
eleq2i |
⊢ ( 𝑥 ∈ 𝐼 ↔ 𝑥 ∈ ( 0 ..^ 𝑁 ) ) |
| 7 |
6
|
biimpi |
⊢ ( 𝑥 ∈ 𝐼 → 𝑥 ∈ ( 0 ..^ 𝑁 ) ) |
| 8 |
|
p1modne |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑥 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑥 + 1 ) mod 𝑁 ) ≠ 𝑥 ) |
| 9 |
5 7 8
|
syl2an |
⊢ ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑥 + 1 ) mod 𝑁 ) ≠ 𝑥 ) |
| 10 |
9
|
necomd |
⊢ ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝑥 ≠ ( ( 𝑥 + 1 ) mod 𝑁 ) ) |
| 11 |
10
|
olcd |
⊢ ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 0 ≠ 0 ∨ 𝑥 ≠ ( ( 𝑥 + 1 ) mod 𝑁 ) ) ) |
| 12 |
|
0z |
⊢ 0 ∈ ℤ |
| 13 |
|
vex |
⊢ 𝑥 ∈ V |
| 14 |
|
opthneg |
⊢ ( ( 0 ∈ ℤ ∧ 𝑥 ∈ V ) → ( 〈 0 , 𝑥 〉 ≠ 〈 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 ↔ ( 0 ≠ 0 ∨ 𝑥 ≠ ( ( 𝑥 + 1 ) mod 𝑁 ) ) ) ) |
| 15 |
12 13 14
|
mp2an |
⊢ ( 〈 0 , 𝑥 〉 ≠ 〈 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 ↔ ( 0 ≠ 0 ∨ 𝑥 ≠ ( ( 𝑥 + 1 ) mod 𝑁 ) ) ) |
| 16 |
11 15
|
sylibr |
⊢ ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ) ∧ 𝑥 ∈ 𝐼 ) → 〈 0 , 𝑥 〉 ≠ 〈 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 ) |
| 17 |
|
opex |
⊢ 〈 0 , 𝑥 〉 ∈ V |
| 18 |
|
opex |
⊢ 〈 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 ∈ V |
| 19 |
|
hashprg |
⊢ ( ( 〈 0 , 𝑥 〉 ∈ V ∧ 〈 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 ∈ V ) → ( 〈 0 , 𝑥 〉 ≠ 〈 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 ↔ ( ♯ ‘ { 〈 0 , 𝑥 〉 , 〈 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ) = 2 ) ) |
| 20 |
17 18 19
|
mp2an |
⊢ ( 〈 0 , 𝑥 〉 ≠ 〈 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 ↔ ( ♯ ‘ { 〈 0 , 𝑥 〉 , 〈 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ) = 2 ) |
| 21 |
16 20
|
sylib |
⊢ ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ♯ ‘ { 〈 0 , 𝑥 〉 , 〈 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ) = 2 ) |
| 22 |
|
fveqeq2 |
⊢ ( 𝑒 = { 〈 0 , 𝑥 〉 , 〈 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } → ( ( ♯ ‘ 𝑒 ) = 2 ↔ ( ♯ ‘ { 〈 0 , 𝑥 〉 , 〈 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ) = 2 ) ) |
| 23 |
21 22
|
syl5ibrcom |
⊢ ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑒 = { 〈 0 , 𝑥 〉 , 〈 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } → ( ♯ ‘ 𝑒 ) = 2 ) ) |
| 24 |
|
0ne1 |
⊢ 0 ≠ 1 |
| 25 |
24
|
a1i |
⊢ ( ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑒 = { 〈 0 , 𝑥 〉 , 〈 1 , 𝑥 〉 } ) → 0 ≠ 1 ) |
| 26 |
25
|
orcd |
⊢ ( ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑒 = { 〈 0 , 𝑥 〉 , 〈 1 , 𝑥 〉 } ) → ( 0 ≠ 1 ∨ 𝑥 ≠ 𝑥 ) ) |
| 27 |
|
opthneg |
⊢ ( ( 0 ∈ ℤ ∧ 𝑥 ∈ V ) → ( 〈 0 , 𝑥 〉 ≠ 〈 1 , 𝑥 〉 ↔ ( 0 ≠ 1 ∨ 𝑥 ≠ 𝑥 ) ) ) |
| 28 |
12 13 27
|
mp2an |
⊢ ( 〈 0 , 𝑥 〉 ≠ 〈 1 , 𝑥 〉 ↔ ( 0 ≠ 1 ∨ 𝑥 ≠ 𝑥 ) ) |
| 29 |
26 28
|
sylibr |
⊢ ( ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑒 = { 〈 0 , 𝑥 〉 , 〈 1 , 𝑥 〉 } ) → 〈 0 , 𝑥 〉 ≠ 〈 1 , 𝑥 〉 ) |
| 30 |
|
opex |
⊢ 〈 1 , 𝑥 〉 ∈ V |
| 31 |
|
hashprg |
⊢ ( ( 〈 0 , 𝑥 〉 ∈ V ∧ 〈 1 , 𝑥 〉 ∈ V ) → ( 〈 0 , 𝑥 〉 ≠ 〈 1 , 𝑥 〉 ↔ ( ♯ ‘ { 〈 0 , 𝑥 〉 , 〈 1 , 𝑥 〉 } ) = 2 ) ) |
| 32 |
17 30 31
|
mp2an |
⊢ ( 〈 0 , 𝑥 〉 ≠ 〈 1 , 𝑥 〉 ↔ ( ♯ ‘ { 〈 0 , 𝑥 〉 , 〈 1 , 𝑥 〉 } ) = 2 ) |
| 33 |
29 32
|
sylib |
⊢ ( ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑒 = { 〈 0 , 𝑥 〉 , 〈 1 , 𝑥 〉 } ) → ( ♯ ‘ { 〈 0 , 𝑥 〉 , 〈 1 , 𝑥 〉 } ) = 2 ) |
| 34 |
|
fveqeq2 |
⊢ ( 𝑒 = { 〈 0 , 𝑥 〉 , 〈 1 , 𝑥 〉 } → ( ( ♯ ‘ 𝑒 ) = 2 ↔ ( ♯ ‘ { 〈 0 , 𝑥 〉 , 〈 1 , 𝑥 〉 } ) = 2 ) ) |
| 35 |
34
|
adantl |
⊢ ( ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑒 = { 〈 0 , 𝑥 〉 , 〈 1 , 𝑥 〉 } ) → ( ( ♯ ‘ 𝑒 ) = 2 ↔ ( ♯ ‘ { 〈 0 , 𝑥 〉 , 〈 1 , 𝑥 〉 } ) = 2 ) ) |
| 36 |
33 35
|
mpbird |
⊢ ( ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ) ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑒 = { 〈 0 , 𝑥 〉 , 〈 1 , 𝑥 〉 } ) → ( ♯ ‘ 𝑒 ) = 2 ) |
| 37 |
36
|
ex |
⊢ ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑒 = { 〈 0 , 𝑥 〉 , 〈 1 , 𝑥 〉 } → ( ♯ ‘ 𝑒 ) = 2 ) ) |
| 38 |
|
eluzge3nn |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 𝑁 ∈ ℕ ) |
| 39 |
38
|
ad3antrrr |
⊢ ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝑁 ∈ ℕ ) |
| 40 |
|
elfzo0 |
⊢ ( 𝑥 ∈ ( 0 ..^ 𝑁 ) ↔ ( 𝑥 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝑥 < 𝑁 ) ) |
| 41 |
6 40
|
bitri |
⊢ ( 𝑥 ∈ 𝐼 ↔ ( 𝑥 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝑥 < 𝑁 ) ) |
| 42 |
|
3simpb |
⊢ ( ( 𝑥 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝑥 < 𝑁 ) → ( 𝑥 ∈ ℕ0 ∧ 𝑥 < 𝑁 ) ) |
| 43 |
41 42
|
sylbi |
⊢ ( 𝑥 ∈ 𝐼 → ( 𝑥 ∈ ℕ0 ∧ 𝑥 < 𝑁 ) ) |
| 44 |
43
|
adantl |
⊢ ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑥 ∈ ℕ0 ∧ 𝑥 < 𝑁 ) ) |
| 45 |
1
|
eleq2i |
⊢ ( 𝐾 ∈ 𝐽 ↔ 𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ) |
| 46 |
|
elfzo1 |
⊢ ( 𝐾 ∈ ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ↔ ( 𝐾 ∈ ℕ ∧ ( ⌈ ‘ ( 𝑁 / 2 ) ) ∈ ℕ ∧ 𝐾 < ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ) |
| 47 |
45 46
|
bitri |
⊢ ( 𝐾 ∈ 𝐽 ↔ ( 𝐾 ∈ ℕ ∧ ( ⌈ ‘ ( 𝑁 / 2 ) ) ∈ ℕ ∧ 𝐾 < ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ) |
| 48 |
|
simpl1 |
⊢ ( ( ( 𝐾 ∈ ℕ ∧ ( ⌈ ‘ ( 𝑁 / 2 ) ) ∈ ℕ ∧ 𝐾 < ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) → 𝐾 ∈ ℕ ) |
| 49 |
|
nnre |
⊢ ( 𝐾 ∈ ℕ → 𝐾 ∈ ℝ ) |
| 50 |
|
nnre |
⊢ ( ( ⌈ ‘ ( 𝑁 / 2 ) ) ∈ ℕ → ( ⌈ ‘ ( 𝑁 / 2 ) ) ∈ ℝ ) |
| 51 |
|
eluzelre |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 𝑁 ∈ ℝ ) |
| 52 |
49 50 51
|
3anim123i |
⊢ ( ( 𝐾 ∈ ℕ ∧ ( ⌈ ‘ ( 𝑁 / 2 ) ) ∈ ℕ ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) → ( 𝐾 ∈ ℝ ∧ ( ⌈ ‘ ( 𝑁 / 2 ) ) ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) |
| 53 |
51
|
rehalfcld |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ( 𝑁 / 2 ) ∈ ℝ ) |
| 54 |
53
|
adantl |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) → ( 𝑁 / 2 ) ∈ ℝ ) |
| 55 |
|
eluzelz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 𝑁 ∈ ℤ ) |
| 56 |
55
|
adantl |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) → 𝑁 ∈ ℤ ) |
| 57 |
|
eluz2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ↔ ( 3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁 ) ) |
| 58 |
|
simp2 |
⊢ ( ( 3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁 ) → 𝑁 ∈ ℤ ) |
| 59 |
|
0re |
⊢ 0 ∈ ℝ |
| 60 |
59
|
a1i |
⊢ ( ( 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁 ) → 0 ∈ ℝ ) |
| 61 |
|
3re |
⊢ 3 ∈ ℝ |
| 62 |
61
|
a1i |
⊢ ( ( 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁 ) → 3 ∈ ℝ ) |
| 63 |
|
zre |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) |
| 64 |
63
|
adantr |
⊢ ( ( 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁 ) → 𝑁 ∈ ℝ ) |
| 65 |
|
3pos |
⊢ 0 < 3 |
| 66 |
59 61 65
|
ltleii |
⊢ 0 ≤ 3 |
| 67 |
66
|
a1i |
⊢ ( ( 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁 ) → 0 ≤ 3 ) |
| 68 |
|
simpr |
⊢ ( ( 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁 ) → 3 ≤ 𝑁 ) |
| 69 |
60 62 64 67 68
|
letrd |
⊢ ( ( 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁 ) → 0 ≤ 𝑁 ) |
| 70 |
69
|
3adant1 |
⊢ ( ( 3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁 ) → 0 ≤ 𝑁 ) |
| 71 |
58 70
|
jca |
⊢ ( ( 3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁 ) → ( 𝑁 ∈ ℤ ∧ 0 ≤ 𝑁 ) ) |
| 72 |
|
elnn0z |
⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℤ ∧ 0 ≤ 𝑁 ) ) |
| 73 |
71 72
|
sylibr |
⊢ ( ( 3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁 ) → 𝑁 ∈ ℕ0 ) |
| 74 |
57 73
|
sylbi |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 𝑁 ∈ ℕ0 ) |
| 75 |
|
2nn |
⊢ 2 ∈ ℕ |
| 76 |
75
|
a1i |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) → 2 ∈ ℕ ) |
| 77 |
|
nn0ledivnn |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 2 ∈ ℕ ) → ( 𝑁 / 2 ) ≤ 𝑁 ) |
| 78 |
74 76 77
|
syl2an2 |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) → ( 𝑁 / 2 ) ≤ 𝑁 ) |
| 79 |
54 56 78
|
3jca |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) → ( ( 𝑁 / 2 ) ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ ( 𝑁 / 2 ) ≤ 𝑁 ) ) |
| 80 |
79
|
3adant2 |
⊢ ( ( 𝐾 ∈ ℕ ∧ ( ⌈ ‘ ( 𝑁 / 2 ) ) ∈ ℕ ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) → ( ( 𝑁 / 2 ) ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ ( 𝑁 / 2 ) ≤ 𝑁 ) ) |
| 81 |
|
ceille |
⊢ ( ( ( 𝑁 / 2 ) ∈ ℝ ∧ 𝑁 ∈ ℤ ∧ ( 𝑁 / 2 ) ≤ 𝑁 ) → ( ⌈ ‘ ( 𝑁 / 2 ) ) ≤ 𝑁 ) |
| 82 |
80 81
|
syl |
⊢ ( ( 𝐾 ∈ ℕ ∧ ( ⌈ ‘ ( 𝑁 / 2 ) ) ∈ ℕ ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) → ( ⌈ ‘ ( 𝑁 / 2 ) ) ≤ 𝑁 ) |
| 83 |
52 82
|
lelttrdi |
⊢ ( ( 𝐾 ∈ ℕ ∧ ( ⌈ ‘ ( 𝑁 / 2 ) ) ∈ ℕ ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) → ( 𝐾 < ( ⌈ ‘ ( 𝑁 / 2 ) ) → 𝐾 < 𝑁 ) ) |
| 84 |
83
|
3exp |
⊢ ( 𝐾 ∈ ℕ → ( ( ⌈ ‘ ( 𝑁 / 2 ) ) ∈ ℕ → ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ( 𝐾 < ( ⌈ ‘ ( 𝑁 / 2 ) ) → 𝐾 < 𝑁 ) ) ) ) |
| 85 |
84
|
com34 |
⊢ ( 𝐾 ∈ ℕ → ( ( ⌈ ‘ ( 𝑁 / 2 ) ) ∈ ℕ → ( 𝐾 < ( ⌈ ‘ ( 𝑁 / 2 ) ) → ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 𝐾 < 𝑁 ) ) ) ) |
| 86 |
85
|
3imp1 |
⊢ ( ( ( 𝐾 ∈ ℕ ∧ ( ⌈ ‘ ( 𝑁 / 2 ) ) ∈ ℕ ∧ 𝐾 < ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) → 𝐾 < 𝑁 ) |
| 87 |
48 86
|
jca |
⊢ ( ( ( 𝐾 ∈ ℕ ∧ ( ⌈ ‘ ( 𝑁 / 2 ) ) ∈ ℕ ∧ 𝐾 < ( ⌈ ‘ ( 𝑁 / 2 ) ) ) ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) → ( 𝐾 ∈ ℕ ∧ 𝐾 < 𝑁 ) ) |
| 88 |
87
|
ex |
⊢ ( ( 𝐾 ∈ ℕ ∧ ( ⌈ ‘ ( 𝑁 / 2 ) ) ∈ ℕ ∧ 𝐾 < ( ⌈ ‘ ( 𝑁 / 2 ) ) ) → ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ( 𝐾 ∈ ℕ ∧ 𝐾 < 𝑁 ) ) ) |
| 89 |
47 88
|
sylbi |
⊢ ( 𝐾 ∈ 𝐽 → ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ( 𝐾 ∈ ℕ ∧ 𝐾 < 𝑁 ) ) ) |
| 90 |
89
|
impcom |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) → ( 𝐾 ∈ ℕ ∧ 𝐾 < 𝑁 ) ) |
| 91 |
90
|
adantr |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ) → ( 𝐾 ∈ ℕ ∧ 𝐾 < 𝑁 ) ) |
| 92 |
91
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝐾 ∈ ℕ ∧ 𝐾 < 𝑁 ) ) |
| 93 |
|
addmodne |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑥 ∈ ℕ0 ∧ 𝑥 < 𝑁 ) ∧ ( 𝐾 ∈ ℕ ∧ 𝐾 < 𝑁 ) ) → ( ( 𝑥 + 𝐾 ) mod 𝑁 ) ≠ 𝑥 ) |
| 94 |
39 44 92 93
|
syl3anc |
⊢ ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑥 + 𝐾 ) mod 𝑁 ) ≠ 𝑥 ) |
| 95 |
94
|
necomd |
⊢ ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝑥 ≠ ( ( 𝑥 + 𝐾 ) mod 𝑁 ) ) |
| 96 |
95
|
olcd |
⊢ ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 1 ≠ 1 ∨ 𝑥 ≠ ( ( 𝑥 + 𝐾 ) mod 𝑁 ) ) ) |
| 97 |
|
1z |
⊢ 1 ∈ ℤ |
| 98 |
|
opthneg |
⊢ ( ( 1 ∈ ℤ ∧ 𝑥 ∈ V ) → ( 〈 1 , 𝑥 〉 ≠ 〈 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) 〉 ↔ ( 1 ≠ 1 ∨ 𝑥 ≠ ( ( 𝑥 + 𝐾 ) mod 𝑁 ) ) ) ) |
| 99 |
97 13 98
|
mp2an |
⊢ ( 〈 1 , 𝑥 〉 ≠ 〈 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) 〉 ↔ ( 1 ≠ 1 ∨ 𝑥 ≠ ( ( 𝑥 + 𝐾 ) mod 𝑁 ) ) ) |
| 100 |
96 99
|
sylibr |
⊢ ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ) ∧ 𝑥 ∈ 𝐼 ) → 〈 1 , 𝑥 〉 ≠ 〈 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) 〉 ) |
| 101 |
|
opex |
⊢ 〈 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) 〉 ∈ V |
| 102 |
|
hashprg |
⊢ ( ( 〈 1 , 𝑥 〉 ∈ V ∧ 〈 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) 〉 ∈ V ) → ( 〈 1 , 𝑥 〉 ≠ 〈 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) 〉 ↔ ( ♯ ‘ { 〈 1 , 𝑥 〉 , 〈 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) 〉 } ) = 2 ) ) |
| 103 |
30 101 102
|
mp2an |
⊢ ( 〈 1 , 𝑥 〉 ≠ 〈 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) 〉 ↔ ( ♯ ‘ { 〈 1 , 𝑥 〉 , 〈 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) 〉 } ) = 2 ) |
| 104 |
100 103
|
sylib |
⊢ ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ♯ ‘ { 〈 1 , 𝑥 〉 , 〈 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) 〉 } ) = 2 ) |
| 105 |
|
fveqeq2 |
⊢ ( 𝑒 = { 〈 1 , 𝑥 〉 , 〈 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) 〉 } → ( ( ♯ ‘ 𝑒 ) = 2 ↔ ( ♯ ‘ { 〈 1 , 𝑥 〉 , 〈 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) 〉 } ) = 2 ) ) |
| 106 |
104 105
|
syl5ibrcom |
⊢ ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑒 = { 〈 1 , 𝑥 〉 , 〈 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) 〉 } → ( ♯ ‘ 𝑒 ) = 2 ) ) |
| 107 |
23 37 106
|
3jaod |
⊢ ( ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑒 = { 〈 0 , 𝑥 〉 , 〈 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ∨ 𝑒 = { 〈 0 , 𝑥 〉 , 〈 1 , 𝑥 〉 } ∨ 𝑒 = { 〈 1 , 𝑥 〉 , 〈 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) 〉 } ) → ( ♯ ‘ 𝑒 ) = 2 ) ) |
| 108 |
107
|
rexlimdva |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ) → ( ∃ 𝑥 ∈ 𝐼 ( 𝑒 = { 〈 0 , 𝑥 〉 , 〈 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ∨ 𝑒 = { 〈 0 , 𝑥 〉 , 〈 1 , 𝑥 〉 } ∨ 𝑒 = { 〈 1 , 𝑥 〉 , 〈 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) 〉 } ) → ( ♯ ‘ 𝑒 ) = 2 ) ) |
| 109 |
108
|
ss2rabdv |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) → { 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ∣ ∃ 𝑥 ∈ 𝐼 ( 𝑒 = { 〈 0 , 𝑥 〉 , 〈 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ∨ 𝑒 = { 〈 0 , 𝑥 〉 , 〈 1 , 𝑥 〉 } ∨ 𝑒 = { 〈 1 , 𝑥 〉 , 〈 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) 〉 } ) } ⊆ { 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ∣ ( ♯ ‘ 𝑒 ) = 2 } ) |
| 110 |
|
fveqeq2 |
⊢ ( 𝑝 = 𝑒 → ( ( ♯ ‘ 𝑝 ) = 2 ↔ ( ♯ ‘ 𝑒 ) = 2 ) ) |
| 111 |
110
|
cbvrabv |
⊢ { 𝑝 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ∣ ( ♯ ‘ 𝑝 ) = 2 } = { 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ∣ ( ♯ ‘ 𝑒 ) = 2 } |
| 112 |
109 111
|
sseqtrrdi |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) → { 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ∣ ∃ 𝑥 ∈ 𝐼 ( 𝑒 = { 〈 0 , 𝑥 〉 , 〈 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ∨ 𝑒 = { 〈 0 , 𝑥 〉 , 〈 1 , 𝑥 〉 } ∨ 𝑒 = { 〈 1 , 𝑥 〉 , 〈 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) 〉 } ) } ⊆ { 𝑝 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ∣ ( ♯ ‘ 𝑝 ) = 2 } ) |