Description: A nonnegative integer is not itself plus 1 modulo an integer greater than 1 and the nonnegative integer. (Contributed by AV, 6-Sep-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | p1modne | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐴 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐴 + 1 ) mod 𝑁 ) ≠ 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzoelz | ⊢ ( 𝐴 ∈ ( 0 ..^ 𝑁 ) → 𝐴 ∈ ℤ ) | |
2 | zp1modne | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐴 ∈ ℤ ) → ( ( 𝐴 + 1 ) mod 𝑁 ) ≠ ( 𝐴 mod 𝑁 ) ) | |
3 | 1 2 | sylan2 | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐴 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐴 + 1 ) mod 𝑁 ) ≠ ( 𝐴 mod 𝑁 ) ) |
4 | zmodidfzoimp | ⊢ ( 𝐴 ∈ ( 0 ..^ 𝑁 ) → ( 𝐴 mod 𝑁 ) = 𝐴 ) | |
5 | 4 | adantl | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐴 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐴 mod 𝑁 ) = 𝐴 ) |
6 | 3 5 | neeqtrd | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐴 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐴 + 1 ) mod 𝑁 ) ≠ 𝐴 ) |