Metamath Proof Explorer


Theorem p1modne

Description: A nonnegative integer is not itself plus 1 modulo an integer greater than 1 and the nonnegative integer. (Contributed by AV, 6-Sep-2025)

Ref Expression
Assertion p1modne ( ( 𝑁 ∈ ( ℤ ‘ 2 ) ∧ 𝐴 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐴 + 1 ) mod 𝑁 ) ≠ 𝐴 )

Proof

Step Hyp Ref Expression
1 elfzoelz ( 𝐴 ∈ ( 0 ..^ 𝑁 ) → 𝐴 ∈ ℤ )
2 zp1modne ( ( 𝑁 ∈ ( ℤ ‘ 2 ) ∧ 𝐴 ∈ ℤ ) → ( ( 𝐴 + 1 ) mod 𝑁 ) ≠ ( 𝐴 mod 𝑁 ) )
3 1 2 sylan2 ( ( 𝑁 ∈ ( ℤ ‘ 2 ) ∧ 𝐴 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐴 + 1 ) mod 𝑁 ) ≠ ( 𝐴 mod 𝑁 ) )
4 zmodidfzoimp ( 𝐴 ∈ ( 0 ..^ 𝑁 ) → ( 𝐴 mod 𝑁 ) = 𝐴 )
5 4 adantl ( ( 𝑁 ∈ ( ℤ ‘ 2 ) ∧ 𝐴 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐴 mod 𝑁 ) = 𝐴 )
6 3 5 neeqtrd ( ( 𝑁 ∈ ( ℤ ‘ 2 ) ∧ 𝐴 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐴 + 1 ) mod 𝑁 ) ≠ 𝐴 )