Description: An integer is not itself plus 1 modulo an integer greater than 1. (Contributed by AV, 6-Sep-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | zp1modne | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐴 ∈ ℤ ) → ( ( 𝐴 + 1 ) mod 𝑁 ) ≠ ( 𝐴 mod 𝑁 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzo1lb | ⊢ ( 1 ∈ ( 1 ..^ 𝑁 ) ↔ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) | |
2 | 1 | biimpri | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 1 ∈ ( 1 ..^ 𝑁 ) ) |
3 | 2 | adantr | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐴 ∈ ℤ ) → 1 ∈ ( 1 ..^ 𝑁 ) ) |
4 | zplusmodne | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐴 ∈ ℤ ∧ 1 ∈ ( 1 ..^ 𝑁 ) ) → ( ( 𝐴 + 1 ) mod 𝑁 ) ≠ ( 𝐴 mod 𝑁 ) ) | |
5 | 3 4 | mpd3an3 | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐴 ∈ ℤ ) → ( ( 𝐴 + 1 ) mod 𝑁 ) ≠ ( 𝐴 mod 𝑁 ) ) |