Metamath Proof Explorer


Theorem zp1modne

Description: An integer is not itself plus 1 modulo an integer greater than 1. (Contributed by AV, 6-Sep-2025)

Ref Expression
Assertion zp1modne N 2 A A + 1 mod N A mod N

Proof

Step Hyp Ref Expression
1 fzo1lb 1 1 ..^ N N 2
2 1 biimpri N 2 1 1 ..^ N
3 2 adantr N 2 A 1 1 ..^ N
4 zplusmodne N 2 A 1 1 ..^ N A + 1 mod N A mod N
5 3 4 mpd3an3 N 2 A A + 1 mod N A mod N