Metamath Proof Explorer


Theorem zp1modne

Description: An integer is not itself plus 1 modulo an integer greater than 1. (Contributed by AV, 6-Sep-2025)

Ref Expression
Assertion zp1modne
|- ( ( N e. ( ZZ>= ` 2 ) /\ A e. ZZ ) -> ( ( A + 1 ) mod N ) =/= ( A mod N ) )

Proof

Step Hyp Ref Expression
1 fzo1lb
 |-  ( 1 e. ( 1 ..^ N ) <-> N e. ( ZZ>= ` 2 ) )
2 1 biimpri
 |-  ( N e. ( ZZ>= ` 2 ) -> 1 e. ( 1 ..^ N ) )
3 2 adantr
 |-  ( ( N e. ( ZZ>= ` 2 ) /\ A e. ZZ ) -> 1 e. ( 1 ..^ N ) )
4 zplusmodne
 |-  ( ( N e. ( ZZ>= ` 2 ) /\ A e. ZZ /\ 1 e. ( 1 ..^ N ) ) -> ( ( A + 1 ) mod N ) =/= ( A mod N ) )
5 3 4 mpd3an3
 |-  ( ( N e. ( ZZ>= ` 2 ) /\ A e. ZZ ) -> ( ( A + 1 ) mod N ) =/= ( A mod N ) )