Metamath Proof Explorer


Theorem p1modne

Description: A nonnegative integer is not itself plus 1 modulo an integer greater than 1 and the nonnegative integer. (Contributed by AV, 6-Sep-2025)

Ref Expression
Assertion p1modne
|- ( ( N e. ( ZZ>= ` 2 ) /\ A e. ( 0 ..^ N ) ) -> ( ( A + 1 ) mod N ) =/= A )

Proof

Step Hyp Ref Expression
1 elfzoelz
 |-  ( A e. ( 0 ..^ N ) -> A e. ZZ )
2 zp1modne
 |-  ( ( N e. ( ZZ>= ` 2 ) /\ A e. ZZ ) -> ( ( A + 1 ) mod N ) =/= ( A mod N ) )
3 1 2 sylan2
 |-  ( ( N e. ( ZZ>= ` 2 ) /\ A e. ( 0 ..^ N ) ) -> ( ( A + 1 ) mod N ) =/= ( A mod N ) )
4 zmodidfzoimp
 |-  ( A e. ( 0 ..^ N ) -> ( A mod N ) = A )
5 4 adantl
 |-  ( ( N e. ( ZZ>= ` 2 ) /\ A e. ( 0 ..^ N ) ) -> ( A mod N ) = A )
6 3 5 neeqtrd
 |-  ( ( N e. ( ZZ>= ` 2 ) /\ A e. ( 0 ..^ N ) ) -> ( ( A + 1 ) mod N ) =/= A )