| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eluz2nn |
|- ( N e. ( ZZ>= ` 2 ) -> N e. NN ) |
| 2 |
1
|
adantr |
|- ( ( N e. ( ZZ>= ` 2 ) /\ A e. ( 0 ..^ N ) ) -> N e. NN ) |
| 3 |
|
elfzoelz |
|- ( A e. ( 0 ..^ N ) -> A e. ZZ ) |
| 4 |
|
1zzd |
|- ( A e. ( 0 ..^ N ) -> 1 e. ZZ ) |
| 5 |
3 4
|
zsubcld |
|- ( A e. ( 0 ..^ N ) -> ( A - 1 ) e. ZZ ) |
| 6 |
3 5
|
jca |
|- ( A e. ( 0 ..^ N ) -> ( A e. ZZ /\ ( A - 1 ) e. ZZ ) ) |
| 7 |
6
|
adantl |
|- ( ( N e. ( ZZ>= ` 2 ) /\ A e. ( 0 ..^ N ) ) -> ( A e. ZZ /\ ( A - 1 ) e. ZZ ) ) |
| 8 |
3
|
zcnd |
|- ( A e. ( 0 ..^ N ) -> A e. CC ) |
| 9 |
8
|
adantl |
|- ( ( N e. ( ZZ>= ` 2 ) /\ A e. ( 0 ..^ N ) ) -> A e. CC ) |
| 10 |
|
1cnd |
|- ( ( N e. ( ZZ>= ` 2 ) /\ A e. ( 0 ..^ N ) ) -> 1 e. CC ) |
| 11 |
9 10
|
nncand |
|- ( ( N e. ( ZZ>= ` 2 ) /\ A e. ( 0 ..^ N ) ) -> ( A - ( A - 1 ) ) = 1 ) |
| 12 |
|
1le1 |
|- 1 <_ 1 |
| 13 |
|
breq2 |
|- ( ( A - ( A - 1 ) ) = 1 -> ( 1 <_ ( A - ( A - 1 ) ) <-> 1 <_ 1 ) ) |
| 14 |
13
|
adantl |
|- ( ( ( N e. ( ZZ>= ` 2 ) /\ A e. ( 0 ..^ N ) ) /\ ( A - ( A - 1 ) ) = 1 ) -> ( 1 <_ ( A - ( A - 1 ) ) <-> 1 <_ 1 ) ) |
| 15 |
12 14
|
mpbiri |
|- ( ( ( N e. ( ZZ>= ` 2 ) /\ A e. ( 0 ..^ N ) ) /\ ( A - ( A - 1 ) ) = 1 ) -> 1 <_ ( A - ( A - 1 ) ) ) |
| 16 |
|
eluz2gt1 |
|- ( N e. ( ZZ>= ` 2 ) -> 1 < N ) |
| 17 |
16
|
adantr |
|- ( ( N e. ( ZZ>= ` 2 ) /\ A e. ( 0 ..^ N ) ) -> 1 < N ) |
| 18 |
17
|
adantr |
|- ( ( ( N e. ( ZZ>= ` 2 ) /\ A e. ( 0 ..^ N ) ) /\ ( A - ( A - 1 ) ) = 1 ) -> 1 < N ) |
| 19 |
|
breq1 |
|- ( ( A - ( A - 1 ) ) = 1 -> ( ( A - ( A - 1 ) ) < N <-> 1 < N ) ) |
| 20 |
19
|
adantl |
|- ( ( ( N e. ( ZZ>= ` 2 ) /\ A e. ( 0 ..^ N ) ) /\ ( A - ( A - 1 ) ) = 1 ) -> ( ( A - ( A - 1 ) ) < N <-> 1 < N ) ) |
| 21 |
18 20
|
mpbird |
|- ( ( ( N e. ( ZZ>= ` 2 ) /\ A e. ( 0 ..^ N ) ) /\ ( A - ( A - 1 ) ) = 1 ) -> ( A - ( A - 1 ) ) < N ) |
| 22 |
15 21
|
jca |
|- ( ( ( N e. ( ZZ>= ` 2 ) /\ A e. ( 0 ..^ N ) ) /\ ( A - ( A - 1 ) ) = 1 ) -> ( 1 <_ ( A - ( A - 1 ) ) /\ ( A - ( A - 1 ) ) < N ) ) |
| 23 |
11 22
|
mpdan |
|- ( ( N e. ( ZZ>= ` 2 ) /\ A e. ( 0 ..^ N ) ) -> ( 1 <_ ( A - ( A - 1 ) ) /\ ( A - ( A - 1 ) ) < N ) ) |
| 24 |
|
difltmodne |
|- ( ( N e. NN /\ ( A e. ZZ /\ ( A - 1 ) e. ZZ ) /\ ( 1 <_ ( A - ( A - 1 ) ) /\ ( A - ( A - 1 ) ) < N ) ) -> ( A mod N ) =/= ( ( A - 1 ) mod N ) ) |
| 25 |
2 7 23 24
|
syl3anc |
|- ( ( N e. ( ZZ>= ` 2 ) /\ A e. ( 0 ..^ N ) ) -> ( A mod N ) =/= ( ( A - 1 ) mod N ) ) |
| 26 |
25
|
necomd |
|- ( ( N e. ( ZZ>= ` 2 ) /\ A e. ( 0 ..^ N ) ) -> ( ( A - 1 ) mod N ) =/= ( A mod N ) ) |
| 27 |
|
zmodidfzoimp |
|- ( A e. ( 0 ..^ N ) -> ( A mod N ) = A ) |
| 28 |
27
|
adantl |
|- ( ( N e. ( ZZ>= ` 2 ) /\ A e. ( 0 ..^ N ) ) -> ( A mod N ) = A ) |
| 29 |
26 28
|
neeqtrd |
|- ( ( N e. ( ZZ>= ` 2 ) /\ A e. ( 0 ..^ N ) ) -> ( ( A - 1 ) mod N ) =/= A ) |