Metamath Proof Explorer


Theorem m1modne

Description: A nonnegative integer is not itself minus 1 modulo an integer greater than 1 and the nonnegative integer. (Contributed by AV, 6-Sep-2025)

Ref Expression
Assertion m1modne N 2 A 0 ..^ N A 1 mod N A

Proof

Step Hyp Ref Expression
1 eluz2nn N 2 N
2 1 adantr N 2 A 0 ..^ N N
3 elfzoelz A 0 ..^ N A
4 1zzd A 0 ..^ N 1
5 3 4 zsubcld A 0 ..^ N A 1
6 3 5 jca A 0 ..^ N A A 1
7 6 adantl N 2 A 0 ..^ N A A 1
8 3 zcnd A 0 ..^ N A
9 8 adantl N 2 A 0 ..^ N A
10 1cnd N 2 A 0 ..^ N 1
11 9 10 nncand N 2 A 0 ..^ N A A 1 = 1
12 1le1 1 1
13 breq2 A A 1 = 1 1 A A 1 1 1
14 13 adantl N 2 A 0 ..^ N A A 1 = 1 1 A A 1 1 1
15 12 14 mpbiri N 2 A 0 ..^ N A A 1 = 1 1 A A 1
16 eluz2gt1 N 2 1 < N
17 16 adantr N 2 A 0 ..^ N 1 < N
18 17 adantr N 2 A 0 ..^ N A A 1 = 1 1 < N
19 breq1 A A 1 = 1 A A 1 < N 1 < N
20 19 adantl N 2 A 0 ..^ N A A 1 = 1 A A 1 < N 1 < N
21 18 20 mpbird N 2 A 0 ..^ N A A 1 = 1 A A 1 < N
22 15 21 jca N 2 A 0 ..^ N A A 1 = 1 1 A A 1 A A 1 < N
23 11 22 mpdan N 2 A 0 ..^ N 1 A A 1 A A 1 < N
24 difltmodne N A A 1 1 A A 1 A A 1 < N A mod N A 1 mod N
25 2 7 23 24 syl3anc N 2 A 0 ..^ N A mod N A 1 mod N
26 25 necomd N 2 A 0 ..^ N A 1 mod N A mod N
27 zmodidfzoimp A 0 ..^ N A mod N = A
28 27 adantl N 2 A 0 ..^ N A mod N = A
29 26 28 neeqtrd N 2 A 0 ..^ N A 1 mod N A