Metamath Proof Explorer


Theorem difltmodne

Description: Two nonnegative integers are not equal modulo a positive modulus if their difference is greater than 0 and less then the modulus. (Contributed by AV, 6-Sep-2025)

Ref Expression
Assertion difltmodne N A B 1 A B A B < N A mod N B mod N

Proof

Step Hyp Ref Expression
1 simp1 N A B 1 A B A B < N N
2 zsubcl A B A B
3 simpl 1 A B A B < N 1 A B
4 2 3 anim12i A B 1 A B A B < N A B 1 A B
5 4 3adant1 N A B 1 A B A B < N A B 1 A B
6 elnnz1 A B A B 1 A B
7 5 6 sylibr N A B 1 A B A B < N A B
8 simp3r N A B 1 A B A B < N A B < N
9 elfzo1 A B 1 ..^ N A B N A B < N
10 7 1 8 9 syl3anbrc N A B 1 A B A B < N A B 1 ..^ N
11 nnz N N
12 11 3ad2ant1 N A B 1 A B A B < N N
13 fzoval N 1 ..^ N = 1 N 1
14 12 13 syl N A B 1 A B A B < N 1 ..^ N = 1 N 1
15 10 14 eleqtrd N A B 1 A B A B < N A B 1 N 1
16 fzm1ndvds N A B 1 N 1 ¬ N A B
17 1 15 16 syl2anc N A B 1 A B A B < N ¬ N A B
18 3simpa N A B 1 A B A B < N N A B
19 3anass N A B N A B
20 18 19 sylibr N A B 1 A B A B < N N A B
21 moddvds N A B A mod N = B mod N N A B
22 20 21 syl N A B 1 A B A B < N A mod N = B mod N N A B
23 17 22 mtbird N A B 1 A B A B < N ¬ A mod N = B mod N
24 23 neqned N A B 1 A B A B < N A mod N B mod N