Metamath Proof Explorer


Theorem elfzo1

Description: Membership in a half-open integer range based at 1. (Contributed by Thierry Arnoux, 14-Feb-2017)

Ref Expression
Assertion elfzo1 N1..^MNMN<M

Proof

Step Hyp Ref Expression
1 fzossnn 1..^M
2 1 sseli N1..^MN
3 elfzouz2 N1..^MMN
4 eluznn NMNM
5 2 3 4 syl2anc N1..^MM
6 elfzolt2 N1..^MN<M
7 2 5 6 3jca N1..^MNMN<M
8 nnuz =1
9 8 eqimssi 1
10 9 sseli NN1
11 nnz MM
12 id N<MN<M
13 10 11 12 3anim123i NMN<MN1MN<M
14 elfzo2 N1..^MN1MN<M
15 13 14 sylibr NMN<MN1..^M
16 7 15 impbii N1..^MNMN<M