Metamath Proof Explorer


Theorem p1modne

Description: A nonnegative integer is not itself plus 1 modulo an integer greater than 1 and the nonnegative integer. (Contributed by AV, 6-Sep-2025)

Ref Expression
Assertion p1modne N 2 A 0 ..^ N A + 1 mod N A

Proof

Step Hyp Ref Expression
1 elfzoelz A 0 ..^ N A
2 zp1modne N 2 A A + 1 mod N A mod N
3 1 2 sylan2 N 2 A 0 ..^ N A + 1 mod N A mod N
4 zmodidfzoimp A 0 ..^ N A mod N = A
5 4 adantl N 2 A 0 ..^ N A mod N = A
6 3 5 neeqtrd N 2 A 0 ..^ N A + 1 mod N A