Metamath Proof Explorer


Theorem fzo1lb

Description: 1 is the left endpoint of a half-open integer range based at 1 iff the right endpoint is an integer greater than 1. (Contributed by AV, 4-Sep-2025)

Ref Expression
Assertion fzo1lb
|- ( 1 e. ( 1 ..^ N ) <-> N e. ( ZZ>= ` 2 ) )

Proof

Step Hyp Ref Expression
1 1z
 |-  1 e. ZZ
2 3anass
 |-  ( ( 1 e. ZZ /\ N e. ZZ /\ 1 < N ) <-> ( 1 e. ZZ /\ ( N e. ZZ /\ 1 < N ) ) )
3 1 2 mpbiran
 |-  ( ( 1 e. ZZ /\ N e. ZZ /\ 1 < N ) <-> ( N e. ZZ /\ 1 < N ) )
4 fzolb
 |-  ( 1 e. ( 1 ..^ N ) <-> ( 1 e. ZZ /\ N e. ZZ /\ 1 < N ) )
5 eluz2b1
 |-  ( N e. ( ZZ>= ` 2 ) <-> ( N e. ZZ /\ 1 < N ) )
6 3 4 5 3bitr4i
 |-  ( 1 e. ( 1 ..^ N ) <-> N e. ( ZZ>= ` 2 ) )