Metamath Proof Explorer


Theorem 1elfzo1

Description: 1 is in a half-open range of positive integers iff its upper bound is greater than 1. (Contributed by AV, 22-Nov-2022)

Ref Expression
Assertion 1elfzo1
|- ( 1 e. ( 1 ..^ M ) <-> ( M e. NN /\ 1 < M ) )

Proof

Step Hyp Ref Expression
1 elfzo1
 |-  ( 1 e. ( 1 ..^ M ) <-> ( 1 e. NN /\ M e. NN /\ 1 < M ) )
2 1nn
 |-  1 e. NN
3 3anass
 |-  ( ( 1 e. NN /\ M e. NN /\ 1 < M ) <-> ( 1 e. NN /\ ( M e. NN /\ 1 < M ) ) )
4 2 3 mpbiran
 |-  ( ( 1 e. NN /\ M e. NN /\ 1 < M ) <-> ( M e. NN /\ 1 < M ) )
5 1 4 bitri
 |-  ( 1 e. ( 1 ..^ M ) <-> ( M e. NN /\ 1 < M ) )