Metamath Proof Explorer


Theorem 1elfzo1

Description: 1 is in a half-open range of positive integers iff its upper bound is greater than 1. (Contributed by AV, 22-Nov-2022)

Ref Expression
Assertion 1elfzo1 1 1 ..^ M M 1 < M

Proof

Step Hyp Ref Expression
1 elfzo1 1 1 ..^ M 1 M 1 < M
2 1nn 1
3 3anass 1 M 1 < M 1 M 1 < M
4 2 3 mpbiran 1 M 1 < M M 1 < M
5 1 4 bitri 1 1 ..^ M M 1 < M