Metamath Proof Explorer


Theorem 1elfzo1

Description: 1 is in a half-open range of positive integers iff its upper bound is greater than 1. (Contributed by AV, 22-Nov-2022)

Ref Expression
Assertion 1elfzo1 ( 1 ∈ ( 1 ..^ 𝑀 ) ↔ ( 𝑀 ∈ ℕ ∧ 1 < 𝑀 ) )

Proof

Step Hyp Ref Expression
1 elfzo1 ( 1 ∈ ( 1 ..^ 𝑀 ) ↔ ( 1 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 1 < 𝑀 ) )
2 1nn 1 ∈ ℕ
3 3anass ( ( 1 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 1 < 𝑀 ) ↔ ( 1 ∈ ℕ ∧ ( 𝑀 ∈ ℕ ∧ 1 < 𝑀 ) ) )
4 2 3 mpbiran ( ( 1 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 1 < 𝑀 ) ↔ ( 𝑀 ∈ ℕ ∧ 1 < 𝑀 ) )
5 1 4 bitri ( 1 ∈ ( 1 ..^ 𝑀 ) ↔ ( 𝑀 ∈ ℕ ∧ 1 < 𝑀 ) )