Metamath Proof Explorer


Theorem fzo1lb

Description: 1 is the left endpoint of a half-open integer range based at 1 iff the right endpoint is an integer greater than 1. (Contributed by AV, 4-Sep-2025)

Ref Expression
Assertion fzo1lb ( 1 ∈ ( 1 ..^ 𝑁 ) ↔ 𝑁 ∈ ( ℤ ‘ 2 ) )

Proof

Step Hyp Ref Expression
1 1z 1 ∈ ℤ
2 3anass ( ( 1 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 1 < 𝑁 ) ↔ ( 1 ∈ ℤ ∧ ( 𝑁 ∈ ℤ ∧ 1 < 𝑁 ) ) )
3 1 2 mpbiran ( ( 1 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 1 < 𝑁 ) ↔ ( 𝑁 ∈ ℤ ∧ 1 < 𝑁 ) )
4 fzolb ( 1 ∈ ( 1 ..^ 𝑁 ) ↔ ( 1 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 1 < 𝑁 ) )
5 eluz2b1 ( 𝑁 ∈ ( ℤ ‘ 2 ) ↔ ( 𝑁 ∈ ℤ ∧ 1 < 𝑁 ) )
6 3 4 5 3bitr4i ( 1 ∈ ( 1 ..^ 𝑁 ) ↔ 𝑁 ∈ ( ℤ ‘ 2 ) )