| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elnn0 |
⊢ ( 𝐴 ∈ ℕ0 ↔ ( 𝐴 ∈ ℕ ∨ 𝐴 = 0 ) ) |
| 2 |
|
nnge1 |
⊢ ( 𝐵 ∈ ℕ → 1 ≤ 𝐵 ) |
| 3 |
2
|
adantl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → 1 ≤ 𝐵 ) |
| 4 |
|
nnrp |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℝ+ ) |
| 5 |
|
nnledivrp |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) → ( 1 ≤ 𝐵 ↔ ( 𝐴 / 𝐵 ) ≤ 𝐴 ) ) |
| 6 |
4 5
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 1 ≤ 𝐵 ↔ ( 𝐴 / 𝐵 ) ≤ 𝐴 ) ) |
| 7 |
3 6
|
mpbid |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 / 𝐵 ) ≤ 𝐴 ) |
| 8 |
7
|
ex |
⊢ ( 𝐴 ∈ ℕ → ( 𝐵 ∈ ℕ → ( 𝐴 / 𝐵 ) ≤ 𝐴 ) ) |
| 9 |
|
nncn |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℂ ) |
| 10 |
|
nnne0 |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ≠ 0 ) |
| 11 |
9 10
|
jca |
⊢ ( 𝐵 ∈ ℕ → ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) |
| 12 |
11
|
adantl |
⊢ ( ( 𝐴 = 0 ∧ 𝐵 ∈ ℕ ) → ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) |
| 13 |
|
div0 |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 0 / 𝐵 ) = 0 ) |
| 14 |
12 13
|
syl |
⊢ ( ( 𝐴 = 0 ∧ 𝐵 ∈ ℕ ) → ( 0 / 𝐵 ) = 0 ) |
| 15 |
|
0le0 |
⊢ 0 ≤ 0 |
| 16 |
14 15
|
eqbrtrdi |
⊢ ( ( 𝐴 = 0 ∧ 𝐵 ∈ ℕ ) → ( 0 / 𝐵 ) ≤ 0 ) |
| 17 |
|
oveq1 |
⊢ ( 𝐴 = 0 → ( 𝐴 / 𝐵 ) = ( 0 / 𝐵 ) ) |
| 18 |
|
id |
⊢ ( 𝐴 = 0 → 𝐴 = 0 ) |
| 19 |
17 18
|
breq12d |
⊢ ( 𝐴 = 0 → ( ( 𝐴 / 𝐵 ) ≤ 𝐴 ↔ ( 0 / 𝐵 ) ≤ 0 ) ) |
| 20 |
19
|
adantr |
⊢ ( ( 𝐴 = 0 ∧ 𝐵 ∈ ℕ ) → ( ( 𝐴 / 𝐵 ) ≤ 𝐴 ↔ ( 0 / 𝐵 ) ≤ 0 ) ) |
| 21 |
16 20
|
mpbird |
⊢ ( ( 𝐴 = 0 ∧ 𝐵 ∈ ℕ ) → ( 𝐴 / 𝐵 ) ≤ 𝐴 ) |
| 22 |
21
|
ex |
⊢ ( 𝐴 = 0 → ( 𝐵 ∈ ℕ → ( 𝐴 / 𝐵 ) ≤ 𝐴 ) ) |
| 23 |
8 22
|
jaoi |
⊢ ( ( 𝐴 ∈ ℕ ∨ 𝐴 = 0 ) → ( 𝐵 ∈ ℕ → ( 𝐴 / 𝐵 ) ≤ 𝐴 ) ) |
| 24 |
1 23
|
sylbi |
⊢ ( 𝐴 ∈ ℕ0 → ( 𝐵 ∈ ℕ → ( 𝐴 / 𝐵 ) ≤ 𝐴 ) ) |
| 25 |
24
|
imp |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → ( 𝐴 / 𝐵 ) ≤ 𝐴 ) |