| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elnn0 |
|- ( A e. NN0 <-> ( A e. NN \/ A = 0 ) ) |
| 2 |
|
nnge1 |
|- ( B e. NN -> 1 <_ B ) |
| 3 |
2
|
adantl |
|- ( ( A e. NN /\ B e. NN ) -> 1 <_ B ) |
| 4 |
|
nnrp |
|- ( B e. NN -> B e. RR+ ) |
| 5 |
|
nnledivrp |
|- ( ( A e. NN /\ B e. RR+ ) -> ( 1 <_ B <-> ( A / B ) <_ A ) ) |
| 6 |
4 5
|
sylan2 |
|- ( ( A e. NN /\ B e. NN ) -> ( 1 <_ B <-> ( A / B ) <_ A ) ) |
| 7 |
3 6
|
mpbid |
|- ( ( A e. NN /\ B e. NN ) -> ( A / B ) <_ A ) |
| 8 |
7
|
ex |
|- ( A e. NN -> ( B e. NN -> ( A / B ) <_ A ) ) |
| 9 |
|
nncn |
|- ( B e. NN -> B e. CC ) |
| 10 |
|
nnne0 |
|- ( B e. NN -> B =/= 0 ) |
| 11 |
9 10
|
jca |
|- ( B e. NN -> ( B e. CC /\ B =/= 0 ) ) |
| 12 |
11
|
adantl |
|- ( ( A = 0 /\ B e. NN ) -> ( B e. CC /\ B =/= 0 ) ) |
| 13 |
|
div0 |
|- ( ( B e. CC /\ B =/= 0 ) -> ( 0 / B ) = 0 ) |
| 14 |
12 13
|
syl |
|- ( ( A = 0 /\ B e. NN ) -> ( 0 / B ) = 0 ) |
| 15 |
|
0le0 |
|- 0 <_ 0 |
| 16 |
14 15
|
eqbrtrdi |
|- ( ( A = 0 /\ B e. NN ) -> ( 0 / B ) <_ 0 ) |
| 17 |
|
oveq1 |
|- ( A = 0 -> ( A / B ) = ( 0 / B ) ) |
| 18 |
|
id |
|- ( A = 0 -> A = 0 ) |
| 19 |
17 18
|
breq12d |
|- ( A = 0 -> ( ( A / B ) <_ A <-> ( 0 / B ) <_ 0 ) ) |
| 20 |
19
|
adantr |
|- ( ( A = 0 /\ B e. NN ) -> ( ( A / B ) <_ A <-> ( 0 / B ) <_ 0 ) ) |
| 21 |
16 20
|
mpbird |
|- ( ( A = 0 /\ B e. NN ) -> ( A / B ) <_ A ) |
| 22 |
21
|
ex |
|- ( A = 0 -> ( B e. NN -> ( A / B ) <_ A ) ) |
| 23 |
8 22
|
jaoi |
|- ( ( A e. NN \/ A = 0 ) -> ( B e. NN -> ( A / B ) <_ A ) ) |
| 24 |
1 23
|
sylbi |
|- ( A e. NN0 -> ( B e. NN -> ( A / B ) <_ A ) ) |
| 25 |
24
|
imp |
|- ( ( A e. NN0 /\ B e. NN ) -> ( A / B ) <_ A ) |