| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1re |
|- 1 e. RR |
| 2 |
|
0lt1 |
|- 0 < 1 |
| 3 |
1 2
|
pm3.2i |
|- ( 1 e. RR /\ 0 < 1 ) |
| 4 |
|
rpregt0 |
|- ( B e. RR+ -> ( B e. RR /\ 0 < B ) ) |
| 5 |
4
|
adantl |
|- ( ( A e. NN /\ B e. RR+ ) -> ( B e. RR /\ 0 < B ) ) |
| 6 |
|
nnre |
|- ( A e. NN -> A e. RR ) |
| 7 |
|
nngt0 |
|- ( A e. NN -> 0 < A ) |
| 8 |
6 7
|
jca |
|- ( A e. NN -> ( A e. RR /\ 0 < A ) ) |
| 9 |
8
|
adantr |
|- ( ( A e. NN /\ B e. RR+ ) -> ( A e. RR /\ 0 < A ) ) |
| 10 |
|
lediv2 |
|- ( ( ( 1 e. RR /\ 0 < 1 ) /\ ( B e. RR /\ 0 < B ) /\ ( A e. RR /\ 0 < A ) ) -> ( 1 <_ B <-> ( A / B ) <_ ( A / 1 ) ) ) |
| 11 |
3 5 9 10
|
mp3an2i |
|- ( ( A e. NN /\ B e. RR+ ) -> ( 1 <_ B <-> ( A / B ) <_ ( A / 1 ) ) ) |
| 12 |
|
nncn |
|- ( A e. NN -> A e. CC ) |
| 13 |
12
|
div1d |
|- ( A e. NN -> ( A / 1 ) = A ) |
| 14 |
13
|
adantr |
|- ( ( A e. NN /\ B e. RR+ ) -> ( A / 1 ) = A ) |
| 15 |
14
|
breq2d |
|- ( ( A e. NN /\ B e. RR+ ) -> ( ( A / B ) <_ ( A / 1 ) <-> ( A / B ) <_ A ) ) |
| 16 |
11 15
|
bitrd |
|- ( ( A e. NN /\ B e. RR+ ) -> ( 1 <_ B <-> ( A / B ) <_ A ) ) |