Step |
Hyp |
Ref |
Expression |
1 |
|
2z |
⊢ 2 ∈ ℤ |
2 |
1
|
a1i |
⊢ ( ( 𝑀 ∈ ℕ ∧ ( 𝐵 ∈ ℕ ∧ 𝐵 < 𝑀 ) ) → 2 ∈ ℤ ) |
3 |
|
nnz |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℤ ) |
4 |
3
|
adantr |
⊢ ( ( 𝑀 ∈ ℕ ∧ ( 𝐵 ∈ ℕ ∧ 𝐵 < 𝑀 ) ) → 𝑀 ∈ ℤ ) |
5 |
|
1red |
⊢ ( ( 𝑀 ∈ ℕ ∧ ( 𝐵 ∈ ℕ ∧ 𝐵 < 𝑀 ) ) → 1 ∈ ℝ ) |
6 |
|
nnre |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℝ ) |
7 |
6
|
ad2antrl |
⊢ ( ( 𝑀 ∈ ℕ ∧ ( 𝐵 ∈ ℕ ∧ 𝐵 < 𝑀 ) ) → 𝐵 ∈ ℝ ) |
8 |
|
nnre |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℝ ) |
9 |
8
|
adantr |
⊢ ( ( 𝑀 ∈ ℕ ∧ ( 𝐵 ∈ ℕ ∧ 𝐵 < 𝑀 ) ) → 𝑀 ∈ ℝ ) |
10 |
|
nnge1 |
⊢ ( 𝐵 ∈ ℕ → 1 ≤ 𝐵 ) |
11 |
10
|
ad2antrl |
⊢ ( ( 𝑀 ∈ ℕ ∧ ( 𝐵 ∈ ℕ ∧ 𝐵 < 𝑀 ) ) → 1 ≤ 𝐵 ) |
12 |
|
simprr |
⊢ ( ( 𝑀 ∈ ℕ ∧ ( 𝐵 ∈ ℕ ∧ 𝐵 < 𝑀 ) ) → 𝐵 < 𝑀 ) |
13 |
5 7 9 11 12
|
lelttrd |
⊢ ( ( 𝑀 ∈ ℕ ∧ ( 𝐵 ∈ ℕ ∧ 𝐵 < 𝑀 ) ) → 1 < 𝑀 ) |
14 |
|
1zzd |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐵 < 𝑀 ) → 1 ∈ ℤ ) |
15 |
|
zltp1le |
⊢ ( ( 1 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 1 < 𝑀 ↔ ( 1 + 1 ) ≤ 𝑀 ) ) |
16 |
14 3 15
|
syl2anr |
⊢ ( ( 𝑀 ∈ ℕ ∧ ( 𝐵 ∈ ℕ ∧ 𝐵 < 𝑀 ) ) → ( 1 < 𝑀 ↔ ( 1 + 1 ) ≤ 𝑀 ) ) |
17 |
|
1p1e2 |
⊢ ( 1 + 1 ) = 2 |
18 |
17
|
breq1i |
⊢ ( ( 1 + 1 ) ≤ 𝑀 ↔ 2 ≤ 𝑀 ) |
19 |
16 18
|
bitrdi |
⊢ ( ( 𝑀 ∈ ℕ ∧ ( 𝐵 ∈ ℕ ∧ 𝐵 < 𝑀 ) ) → ( 1 < 𝑀 ↔ 2 ≤ 𝑀 ) ) |
20 |
13 19
|
mpbid |
⊢ ( ( 𝑀 ∈ ℕ ∧ ( 𝐵 ∈ ℕ ∧ 𝐵 < 𝑀 ) ) → 2 ≤ 𝑀 ) |
21 |
2 4 20
|
3jca |
⊢ ( ( 𝑀 ∈ ℕ ∧ ( 𝐵 ∈ ℕ ∧ 𝐵 < 𝑀 ) ) → ( 2 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 2 ≤ 𝑀 ) ) |
22 |
21
|
3adant2 |
⊢ ( ( 𝑀 ∈ ℕ ∧ ( 𝐴 ∈ ℕ0 ∧ 𝐴 < 𝑀 ) ∧ ( 𝐵 ∈ ℕ ∧ 𝐵 < 𝑀 ) ) → ( 2 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 2 ≤ 𝑀 ) ) |
23 |
|
eluz2 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 2 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 2 ≤ 𝑀 ) ) |
24 |
22 23
|
sylibr |
⊢ ( ( 𝑀 ∈ ℕ ∧ ( 𝐴 ∈ ℕ0 ∧ 𝐴 < 𝑀 ) ∧ ( 𝐵 ∈ ℕ ∧ 𝐵 < 𝑀 ) ) → 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) |
25 |
|
nn0z |
⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℤ ) |
26 |
25
|
adantr |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐴 < 𝑀 ) → 𝐴 ∈ ℤ ) |
27 |
26
|
3ad2ant2 |
⊢ ( ( 𝑀 ∈ ℕ ∧ ( 𝐴 ∈ ℕ0 ∧ 𝐴 < 𝑀 ) ∧ ( 𝐵 ∈ ℕ ∧ 𝐵 < 𝑀 ) ) → 𝐴 ∈ ℤ ) |
28 |
|
simprl |
⊢ ( ( 𝑀 ∈ ℕ ∧ ( 𝐵 ∈ ℕ ∧ 𝐵 < 𝑀 ) ) → 𝐵 ∈ ℕ ) |
29 |
|
simpl |
⊢ ( ( 𝑀 ∈ ℕ ∧ ( 𝐵 ∈ ℕ ∧ 𝐵 < 𝑀 ) ) → 𝑀 ∈ ℕ ) |
30 |
28 29 12
|
3jca |
⊢ ( ( 𝑀 ∈ ℕ ∧ ( 𝐵 ∈ ℕ ∧ 𝐵 < 𝑀 ) ) → ( 𝐵 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝐵 < 𝑀 ) ) |
31 |
30
|
3adant2 |
⊢ ( ( 𝑀 ∈ ℕ ∧ ( 𝐴 ∈ ℕ0 ∧ 𝐴 < 𝑀 ) ∧ ( 𝐵 ∈ ℕ ∧ 𝐵 < 𝑀 ) ) → ( 𝐵 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝐵 < 𝑀 ) ) |
32 |
|
elfzo1 |
⊢ ( 𝐵 ∈ ( 1 ..^ 𝑀 ) ↔ ( 𝐵 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝐵 < 𝑀 ) ) |
33 |
31 32
|
sylibr |
⊢ ( ( 𝑀 ∈ ℕ ∧ ( 𝐴 ∈ ℕ0 ∧ 𝐴 < 𝑀 ) ∧ ( 𝐵 ∈ ℕ ∧ 𝐵 < 𝑀 ) ) → 𝐵 ∈ ( 1 ..^ 𝑀 ) ) |
34 |
|
zplusmodne |
⊢ ( ( 𝑀 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ( 1 ..^ 𝑀 ) ) → ( ( 𝐴 + 𝐵 ) mod 𝑀 ) ≠ ( 𝐴 mod 𝑀 ) ) |
35 |
24 27 33 34
|
syl3anc |
⊢ ( ( 𝑀 ∈ ℕ ∧ ( 𝐴 ∈ ℕ0 ∧ 𝐴 < 𝑀 ) ∧ ( 𝐵 ∈ ℕ ∧ 𝐵 < 𝑀 ) ) → ( ( 𝐴 + 𝐵 ) mod 𝑀 ) ≠ ( 𝐴 mod 𝑀 ) ) |
36 |
|
nnrp |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℝ+ ) |
37 |
|
nn0re |
⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ ) |
38 |
37
|
adantr |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐴 < 𝑀 ) → 𝐴 ∈ ℝ ) |
39 |
36 38
|
anim12ci |
⊢ ( ( 𝑀 ∈ ℕ ∧ ( 𝐴 ∈ ℕ0 ∧ 𝐴 < 𝑀 ) ) → ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) ) |
40 |
39
|
3adant3 |
⊢ ( ( 𝑀 ∈ ℕ ∧ ( 𝐴 ∈ ℕ0 ∧ 𝐴 < 𝑀 ) ∧ ( 𝐵 ∈ ℕ ∧ 𝐵 < 𝑀 ) ) → ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) ) |
41 |
|
nn0ge0 |
⊢ ( 𝐴 ∈ ℕ0 → 0 ≤ 𝐴 ) |
42 |
41
|
anim1i |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐴 < 𝑀 ) → ( 0 ≤ 𝐴 ∧ 𝐴 < 𝑀 ) ) |
43 |
42
|
3ad2ant2 |
⊢ ( ( 𝑀 ∈ ℕ ∧ ( 𝐴 ∈ ℕ0 ∧ 𝐴 < 𝑀 ) ∧ ( 𝐵 ∈ ℕ ∧ 𝐵 < 𝑀 ) ) → ( 0 ≤ 𝐴 ∧ 𝐴 < 𝑀 ) ) |
44 |
|
modid |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝑀 ) ) → ( 𝐴 mod 𝑀 ) = 𝐴 ) |
45 |
40 43 44
|
syl2anc |
⊢ ( ( 𝑀 ∈ ℕ ∧ ( 𝐴 ∈ ℕ0 ∧ 𝐴 < 𝑀 ) ∧ ( 𝐵 ∈ ℕ ∧ 𝐵 < 𝑀 ) ) → ( 𝐴 mod 𝑀 ) = 𝐴 ) |
46 |
35 45
|
neeqtrd |
⊢ ( ( 𝑀 ∈ ℕ ∧ ( 𝐴 ∈ ℕ0 ∧ 𝐴 < 𝑀 ) ∧ ( 𝐵 ∈ ℕ ∧ 𝐵 < 𝑀 ) ) → ( ( 𝐴 + 𝐵 ) mod 𝑀 ) ≠ 𝐴 ) |