Step |
Hyp |
Ref |
Expression |
1 |
|
5nn |
⊢ 5 ∈ ℕ |
2 |
|
elfzo0 |
⊢ ( 𝐴 ∈ ( 0 ..^ 5 ) ↔ ( 𝐴 ∈ ℕ0 ∧ 5 ∈ ℕ ∧ 𝐴 < 5 ) ) |
3 |
|
3simpb |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 5 ∈ ℕ ∧ 𝐴 < 5 ) → ( 𝐴 ∈ ℕ0 ∧ 𝐴 < 5 ) ) |
4 |
2 3
|
sylbi |
⊢ ( 𝐴 ∈ ( 0 ..^ 5 ) → ( 𝐴 ∈ ℕ0 ∧ 𝐴 < 5 ) ) |
5 |
|
elfzo1 |
⊢ ( 𝐾 ∈ ( 1 ..^ 5 ) ↔ ( 𝐾 ∈ ℕ ∧ 5 ∈ ℕ ∧ 𝐾 < 5 ) ) |
6 |
|
3simpb |
⊢ ( ( 𝐾 ∈ ℕ ∧ 5 ∈ ℕ ∧ 𝐾 < 5 ) → ( 𝐾 ∈ ℕ ∧ 𝐾 < 5 ) ) |
7 |
5 6
|
sylbi |
⊢ ( 𝐾 ∈ ( 1 ..^ 5 ) → ( 𝐾 ∈ ℕ ∧ 𝐾 < 5 ) ) |
8 |
|
addmodne |
⊢ ( ( 5 ∈ ℕ ∧ ( 𝐴 ∈ ℕ0 ∧ 𝐴 < 5 ) ∧ ( 𝐾 ∈ ℕ ∧ 𝐾 < 5 ) ) → ( ( 𝐴 + 𝐾 ) mod 5 ) ≠ 𝐴 ) |
9 |
1 4 7 8
|
mp3an3an |
⊢ ( ( 𝐴 ∈ ( 0 ..^ 5 ) ∧ 𝐾 ∈ ( 1 ..^ 5 ) ) → ( ( 𝐴 + 𝐾 ) mod 5 ) ≠ 𝐴 ) |