Metamath Proof Explorer


Theorem plusmod5ne

Description: A nonnegative integer is not itself plus a positive integer less than 5 modulo 5. (Contributed by AV, 6-Sep-2025)

Ref Expression
Assertion plusmod5ne ( ( 𝐴 ∈ ( 0 ..^ 5 ) ∧ 𝐾 ∈ ( 1 ..^ 5 ) ) → ( ( 𝐴 + 𝐾 ) mod 5 ) ≠ 𝐴 )

Proof

Step Hyp Ref Expression
1 5nn 5 ∈ ℕ
2 elfzo0 ( 𝐴 ∈ ( 0 ..^ 5 ) ↔ ( 𝐴 ∈ ℕ0 ∧ 5 ∈ ℕ ∧ 𝐴 < 5 ) )
3 3simpb ( ( 𝐴 ∈ ℕ0 ∧ 5 ∈ ℕ ∧ 𝐴 < 5 ) → ( 𝐴 ∈ ℕ0𝐴 < 5 ) )
4 2 3 sylbi ( 𝐴 ∈ ( 0 ..^ 5 ) → ( 𝐴 ∈ ℕ0𝐴 < 5 ) )
5 elfzo1 ( 𝐾 ∈ ( 1 ..^ 5 ) ↔ ( 𝐾 ∈ ℕ ∧ 5 ∈ ℕ ∧ 𝐾 < 5 ) )
6 3simpb ( ( 𝐾 ∈ ℕ ∧ 5 ∈ ℕ ∧ 𝐾 < 5 ) → ( 𝐾 ∈ ℕ ∧ 𝐾 < 5 ) )
7 5 6 sylbi ( 𝐾 ∈ ( 1 ..^ 5 ) → ( 𝐾 ∈ ℕ ∧ 𝐾 < 5 ) )
8 addmodne ( ( 5 ∈ ℕ ∧ ( 𝐴 ∈ ℕ0𝐴 < 5 ) ∧ ( 𝐾 ∈ ℕ ∧ 𝐾 < 5 ) ) → ( ( 𝐴 + 𝐾 ) mod 5 ) ≠ 𝐴 )
9 1 4 7 8 mp3an3an ( ( 𝐴 ∈ ( 0 ..^ 5 ) ∧ 𝐾 ∈ ( 1 ..^ 5 ) ) → ( ( 𝐴 + 𝐾 ) mod 5 ) ≠ 𝐴 )