| Step |
Hyp |
Ref |
Expression |
| 1 |
|
5nn |
⊢ 5 ∈ ℕ |
| 2 |
|
elfzo0 |
⊢ ( 𝐴 ∈ ( 0 ..^ 5 ) ↔ ( 𝐴 ∈ ℕ0 ∧ 5 ∈ ℕ ∧ 𝐴 < 5 ) ) |
| 3 |
|
3simpb |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 5 ∈ ℕ ∧ 𝐴 < 5 ) → ( 𝐴 ∈ ℕ0 ∧ 𝐴 < 5 ) ) |
| 4 |
2 3
|
sylbi |
⊢ ( 𝐴 ∈ ( 0 ..^ 5 ) → ( 𝐴 ∈ ℕ0 ∧ 𝐴 < 5 ) ) |
| 5 |
|
elfzo1 |
⊢ ( 𝐾 ∈ ( 1 ..^ 5 ) ↔ ( 𝐾 ∈ ℕ ∧ 5 ∈ ℕ ∧ 𝐾 < 5 ) ) |
| 6 |
|
3simpb |
⊢ ( ( 𝐾 ∈ ℕ ∧ 5 ∈ ℕ ∧ 𝐾 < 5 ) → ( 𝐾 ∈ ℕ ∧ 𝐾 < 5 ) ) |
| 7 |
5 6
|
sylbi |
⊢ ( 𝐾 ∈ ( 1 ..^ 5 ) → ( 𝐾 ∈ ℕ ∧ 𝐾 < 5 ) ) |
| 8 |
|
addmodne |
⊢ ( ( 5 ∈ ℕ ∧ ( 𝐴 ∈ ℕ0 ∧ 𝐴 < 5 ) ∧ ( 𝐾 ∈ ℕ ∧ 𝐾 < 5 ) ) → ( ( 𝐴 + 𝐾 ) mod 5 ) ≠ 𝐴 ) |
| 9 |
1 4 7 8
|
mp3an3an |
⊢ ( ( 𝐴 ∈ ( 0 ..^ 5 ) ∧ 𝐾 ∈ ( 1 ..^ 5 ) ) → ( ( 𝐴 + 𝐾 ) mod 5 ) ≠ 𝐴 ) |