Step |
Hyp |
Ref |
Expression |
1 |
|
5nn |
|- 5 e. NN |
2 |
|
elfzo0 |
|- ( A e. ( 0 ..^ 5 ) <-> ( A e. NN0 /\ 5 e. NN /\ A < 5 ) ) |
3 |
|
3simpb |
|- ( ( A e. NN0 /\ 5 e. NN /\ A < 5 ) -> ( A e. NN0 /\ A < 5 ) ) |
4 |
2 3
|
sylbi |
|- ( A e. ( 0 ..^ 5 ) -> ( A e. NN0 /\ A < 5 ) ) |
5 |
|
elfzo1 |
|- ( K e. ( 1 ..^ 5 ) <-> ( K e. NN /\ 5 e. NN /\ K < 5 ) ) |
6 |
|
3simpb |
|- ( ( K e. NN /\ 5 e. NN /\ K < 5 ) -> ( K e. NN /\ K < 5 ) ) |
7 |
5 6
|
sylbi |
|- ( K e. ( 1 ..^ 5 ) -> ( K e. NN /\ K < 5 ) ) |
8 |
|
addmodne |
|- ( ( 5 e. NN /\ ( A e. NN0 /\ A < 5 ) /\ ( K e. NN /\ K < 5 ) ) -> ( ( A + K ) mod 5 ) =/= A ) |
9 |
1 4 7 8
|
mp3an3an |
|- ( ( A e. ( 0 ..^ 5 ) /\ K e. ( 1 ..^ 5 ) ) -> ( ( A + K ) mod 5 ) =/= A ) |