Metamath Proof Explorer


Theorem plusmod5ne

Description: A nonnegative integer is not itself plus a positive integer less than 5 modulo 5. (Contributed by AV, 6-Sep-2025)

Ref Expression
Assertion plusmod5ne
|- ( ( A e. ( 0 ..^ 5 ) /\ K e. ( 1 ..^ 5 ) ) -> ( ( A + K ) mod 5 ) =/= A )

Proof

Step Hyp Ref Expression
1 5nn
 |-  5 e. NN
2 elfzo0
 |-  ( A e. ( 0 ..^ 5 ) <-> ( A e. NN0 /\ 5 e. NN /\ A < 5 ) )
3 3simpb
 |-  ( ( A e. NN0 /\ 5 e. NN /\ A < 5 ) -> ( A e. NN0 /\ A < 5 ) )
4 2 3 sylbi
 |-  ( A e. ( 0 ..^ 5 ) -> ( A e. NN0 /\ A < 5 ) )
5 elfzo1
 |-  ( K e. ( 1 ..^ 5 ) <-> ( K e. NN /\ 5 e. NN /\ K < 5 ) )
6 3simpb
 |-  ( ( K e. NN /\ 5 e. NN /\ K < 5 ) -> ( K e. NN /\ K < 5 ) )
7 5 6 sylbi
 |-  ( K e. ( 1 ..^ 5 ) -> ( K e. NN /\ K < 5 ) )
8 addmodne
 |-  ( ( 5 e. NN /\ ( A e. NN0 /\ A < 5 ) /\ ( K e. NN /\ K < 5 ) ) -> ( ( A + K ) mod 5 ) =/= A )
9 1 4 7 8 mp3an3an
 |-  ( ( A e. ( 0 ..^ 5 ) /\ K e. ( 1 ..^ 5 ) ) -> ( ( A + K ) mod 5 ) =/= A )