Step |
Hyp |
Ref |
Expression |
1 |
|
2z |
|- 2 e. ZZ |
2 |
1
|
a1i |
|- ( ( M e. NN /\ ( B e. NN /\ B < M ) ) -> 2 e. ZZ ) |
3 |
|
nnz |
|- ( M e. NN -> M e. ZZ ) |
4 |
3
|
adantr |
|- ( ( M e. NN /\ ( B e. NN /\ B < M ) ) -> M e. ZZ ) |
5 |
|
1red |
|- ( ( M e. NN /\ ( B e. NN /\ B < M ) ) -> 1 e. RR ) |
6 |
|
nnre |
|- ( B e. NN -> B e. RR ) |
7 |
6
|
ad2antrl |
|- ( ( M e. NN /\ ( B e. NN /\ B < M ) ) -> B e. RR ) |
8 |
|
nnre |
|- ( M e. NN -> M e. RR ) |
9 |
8
|
adantr |
|- ( ( M e. NN /\ ( B e. NN /\ B < M ) ) -> M e. RR ) |
10 |
|
nnge1 |
|- ( B e. NN -> 1 <_ B ) |
11 |
10
|
ad2antrl |
|- ( ( M e. NN /\ ( B e. NN /\ B < M ) ) -> 1 <_ B ) |
12 |
|
simprr |
|- ( ( M e. NN /\ ( B e. NN /\ B < M ) ) -> B < M ) |
13 |
5 7 9 11 12
|
lelttrd |
|- ( ( M e. NN /\ ( B e. NN /\ B < M ) ) -> 1 < M ) |
14 |
|
1zzd |
|- ( ( B e. NN /\ B < M ) -> 1 e. ZZ ) |
15 |
|
zltp1le |
|- ( ( 1 e. ZZ /\ M e. ZZ ) -> ( 1 < M <-> ( 1 + 1 ) <_ M ) ) |
16 |
14 3 15
|
syl2anr |
|- ( ( M e. NN /\ ( B e. NN /\ B < M ) ) -> ( 1 < M <-> ( 1 + 1 ) <_ M ) ) |
17 |
|
1p1e2 |
|- ( 1 + 1 ) = 2 |
18 |
17
|
breq1i |
|- ( ( 1 + 1 ) <_ M <-> 2 <_ M ) |
19 |
16 18
|
bitrdi |
|- ( ( M e. NN /\ ( B e. NN /\ B < M ) ) -> ( 1 < M <-> 2 <_ M ) ) |
20 |
13 19
|
mpbid |
|- ( ( M e. NN /\ ( B e. NN /\ B < M ) ) -> 2 <_ M ) |
21 |
2 4 20
|
3jca |
|- ( ( M e. NN /\ ( B e. NN /\ B < M ) ) -> ( 2 e. ZZ /\ M e. ZZ /\ 2 <_ M ) ) |
22 |
21
|
3adant2 |
|- ( ( M e. NN /\ ( A e. NN0 /\ A < M ) /\ ( B e. NN /\ B < M ) ) -> ( 2 e. ZZ /\ M e. ZZ /\ 2 <_ M ) ) |
23 |
|
eluz2 |
|- ( M e. ( ZZ>= ` 2 ) <-> ( 2 e. ZZ /\ M e. ZZ /\ 2 <_ M ) ) |
24 |
22 23
|
sylibr |
|- ( ( M e. NN /\ ( A e. NN0 /\ A < M ) /\ ( B e. NN /\ B < M ) ) -> M e. ( ZZ>= ` 2 ) ) |
25 |
|
nn0z |
|- ( A e. NN0 -> A e. ZZ ) |
26 |
25
|
adantr |
|- ( ( A e. NN0 /\ A < M ) -> A e. ZZ ) |
27 |
26
|
3ad2ant2 |
|- ( ( M e. NN /\ ( A e. NN0 /\ A < M ) /\ ( B e. NN /\ B < M ) ) -> A e. ZZ ) |
28 |
|
simprl |
|- ( ( M e. NN /\ ( B e. NN /\ B < M ) ) -> B e. NN ) |
29 |
|
simpl |
|- ( ( M e. NN /\ ( B e. NN /\ B < M ) ) -> M e. NN ) |
30 |
28 29 12
|
3jca |
|- ( ( M e. NN /\ ( B e. NN /\ B < M ) ) -> ( B e. NN /\ M e. NN /\ B < M ) ) |
31 |
30
|
3adant2 |
|- ( ( M e. NN /\ ( A e. NN0 /\ A < M ) /\ ( B e. NN /\ B < M ) ) -> ( B e. NN /\ M e. NN /\ B < M ) ) |
32 |
|
elfzo1 |
|- ( B e. ( 1 ..^ M ) <-> ( B e. NN /\ M e. NN /\ B < M ) ) |
33 |
31 32
|
sylibr |
|- ( ( M e. NN /\ ( A e. NN0 /\ A < M ) /\ ( B e. NN /\ B < M ) ) -> B e. ( 1 ..^ M ) ) |
34 |
|
zplusmodne |
|- ( ( M e. ( ZZ>= ` 2 ) /\ A e. ZZ /\ B e. ( 1 ..^ M ) ) -> ( ( A + B ) mod M ) =/= ( A mod M ) ) |
35 |
24 27 33 34
|
syl3anc |
|- ( ( M e. NN /\ ( A e. NN0 /\ A < M ) /\ ( B e. NN /\ B < M ) ) -> ( ( A + B ) mod M ) =/= ( A mod M ) ) |
36 |
|
nnrp |
|- ( M e. NN -> M e. RR+ ) |
37 |
|
nn0re |
|- ( A e. NN0 -> A e. RR ) |
38 |
37
|
adantr |
|- ( ( A e. NN0 /\ A < M ) -> A e. RR ) |
39 |
36 38
|
anim12ci |
|- ( ( M e. NN /\ ( A e. NN0 /\ A < M ) ) -> ( A e. RR /\ M e. RR+ ) ) |
40 |
39
|
3adant3 |
|- ( ( M e. NN /\ ( A e. NN0 /\ A < M ) /\ ( B e. NN /\ B < M ) ) -> ( A e. RR /\ M e. RR+ ) ) |
41 |
|
nn0ge0 |
|- ( A e. NN0 -> 0 <_ A ) |
42 |
41
|
anim1i |
|- ( ( A e. NN0 /\ A < M ) -> ( 0 <_ A /\ A < M ) ) |
43 |
42
|
3ad2ant2 |
|- ( ( M e. NN /\ ( A e. NN0 /\ A < M ) /\ ( B e. NN /\ B < M ) ) -> ( 0 <_ A /\ A < M ) ) |
44 |
|
modid |
|- ( ( ( A e. RR /\ M e. RR+ ) /\ ( 0 <_ A /\ A < M ) ) -> ( A mod M ) = A ) |
45 |
40 43 44
|
syl2anc |
|- ( ( M e. NN /\ ( A e. NN0 /\ A < M ) /\ ( B e. NN /\ B < M ) ) -> ( A mod M ) = A ) |
46 |
35 45
|
neeqtrd |
|- ( ( M e. NN /\ ( A e. NN0 /\ A < M ) /\ ( B e. NN /\ B < M ) ) -> ( ( A + B ) mod M ) =/= A ) |