Metamath Proof Explorer


Theorem ceille

Description: The ceiling of a real number is the smallest integer greater than or equal to it. (Contributed by AV, 30-Nov-2018)

Ref Expression
Assertion ceille ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵 ) → ( ⌈ ‘ 𝐴 ) ≤ 𝐵 )

Proof

Step Hyp Ref Expression
1 ceilval ( 𝐴 ∈ ℝ → ( ⌈ ‘ 𝐴 ) = - ( ⌊ ‘ - 𝐴 ) )
2 1 3ad2ant1 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵 ) → ( ⌈ ‘ 𝐴 ) = - ( ⌊ ‘ - 𝐴 ) )
3 ceile ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵 ) → - ( ⌊ ‘ - 𝐴 ) ≤ 𝐵 )
4 2 3 eqbrtrd ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵 ) → ( ⌈ ‘ 𝐴 ) ≤ 𝐵 )