Metamath Proof Explorer


Theorem ceille

Description: The ceiling of a real number is the smallest integer greater than or equal to it. (Contributed by AV, 30-Nov-2018)

Ref Expression
Assertion ceille
|- ( ( A e. RR /\ B e. ZZ /\ A <_ B ) -> ( |^ ` A ) <_ B )

Proof

Step Hyp Ref Expression
1 ceilval
 |-  ( A e. RR -> ( |^ ` A ) = -u ( |_ ` -u A ) )
2 1 3ad2ant1
 |-  ( ( A e. RR /\ B e. ZZ /\ A <_ B ) -> ( |^ ` A ) = -u ( |_ ` -u A ) )
3 ceile
 |-  ( ( A e. RR /\ B e. ZZ /\ A <_ B ) -> -u ( |_ ` -u A ) <_ B )
4 2 3 eqbrtrd
 |-  ( ( A e. RR /\ B e. ZZ /\ A <_ B ) -> ( |^ ` A ) <_ B )