Step |
Hyp |
Ref |
Expression |
1 |
|
ceim1l |
|- ( A e. RR -> ( -u ( |_ ` -u A ) - 1 ) < A ) |
2 |
1
|
adantr |
|- ( ( A e. RR /\ B e. ZZ ) -> ( -u ( |_ ` -u A ) - 1 ) < A ) |
3 |
|
ceicl |
|- ( A e. RR -> -u ( |_ ` -u A ) e. ZZ ) |
4 |
|
zre |
|- ( -u ( |_ ` -u A ) e. ZZ -> -u ( |_ ` -u A ) e. RR ) |
5 |
|
peano2rem |
|- ( -u ( |_ ` -u A ) e. RR -> ( -u ( |_ ` -u A ) - 1 ) e. RR ) |
6 |
3 4 5
|
3syl |
|- ( A e. RR -> ( -u ( |_ ` -u A ) - 1 ) e. RR ) |
7 |
6
|
adantr |
|- ( ( A e. RR /\ B e. ZZ ) -> ( -u ( |_ ` -u A ) - 1 ) e. RR ) |
8 |
|
simpl |
|- ( ( A e. RR /\ B e. ZZ ) -> A e. RR ) |
9 |
|
zre |
|- ( B e. ZZ -> B e. RR ) |
10 |
9
|
adantl |
|- ( ( A e. RR /\ B e. ZZ ) -> B e. RR ) |
11 |
|
ltletr |
|- ( ( ( -u ( |_ ` -u A ) - 1 ) e. RR /\ A e. RR /\ B e. RR ) -> ( ( ( -u ( |_ ` -u A ) - 1 ) < A /\ A <_ B ) -> ( -u ( |_ ` -u A ) - 1 ) < B ) ) |
12 |
7 8 10 11
|
syl3anc |
|- ( ( A e. RR /\ B e. ZZ ) -> ( ( ( -u ( |_ ` -u A ) - 1 ) < A /\ A <_ B ) -> ( -u ( |_ ` -u A ) - 1 ) < B ) ) |
13 |
2 12
|
mpand |
|- ( ( A e. RR /\ B e. ZZ ) -> ( A <_ B -> ( -u ( |_ ` -u A ) - 1 ) < B ) ) |
14 |
|
zlem1lt |
|- ( ( -u ( |_ ` -u A ) e. ZZ /\ B e. ZZ ) -> ( -u ( |_ ` -u A ) <_ B <-> ( -u ( |_ ` -u A ) - 1 ) < B ) ) |
15 |
3 14
|
sylan |
|- ( ( A e. RR /\ B e. ZZ ) -> ( -u ( |_ ` -u A ) <_ B <-> ( -u ( |_ ` -u A ) - 1 ) < B ) ) |
16 |
13 15
|
sylibrd |
|- ( ( A e. RR /\ B e. ZZ ) -> ( A <_ B -> -u ( |_ ` -u A ) <_ B ) ) |
17 |
16
|
3impia |
|- ( ( A e. RR /\ B e. ZZ /\ A <_ B ) -> -u ( |_ ` -u A ) <_ B ) |