Step |
Hyp |
Ref |
Expression |
1 |
|
f1oi |
|- ( _I |` { e e. ~P ( { 0 , 1 } X. ( 0 ..^ N ) ) | E. x e. ( 0 ..^ N ) ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } ) : { e e. ~P ( { 0 , 1 } X. ( 0 ..^ N ) ) | E. x e. ( 0 ..^ N ) ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } -1-1-onto-> { e e. ~P ( { 0 , 1 } X. ( 0 ..^ N ) ) | E. x e. ( 0 ..^ N ) ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } |
2 |
|
f1of1 |
|- ( ( _I |` { e e. ~P ( { 0 , 1 } X. ( 0 ..^ N ) ) | E. x e. ( 0 ..^ N ) ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } ) : { e e. ~P ( { 0 , 1 } X. ( 0 ..^ N ) ) | E. x e. ( 0 ..^ N ) ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } -1-1-onto-> { e e. ~P ( { 0 , 1 } X. ( 0 ..^ N ) ) | E. x e. ( 0 ..^ N ) ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } -> ( _I |` { e e. ~P ( { 0 , 1 } X. ( 0 ..^ N ) ) | E. x e. ( 0 ..^ N ) ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } ) : { e e. ~P ( { 0 , 1 } X. ( 0 ..^ N ) ) | E. x e. ( 0 ..^ N ) ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } -1-1-> { e e. ~P ( { 0 , 1 } X. ( 0 ..^ N ) ) | E. x e. ( 0 ..^ N ) ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } ) |
3 |
1 2
|
mp1i |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> ( _I |` { e e. ~P ( { 0 , 1 } X. ( 0 ..^ N ) ) | E. x e. ( 0 ..^ N ) ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } ) : { e e. ~P ( { 0 , 1 } X. ( 0 ..^ N ) ) | E. x e. ( 0 ..^ N ) ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } -1-1-> { e e. ~P ( { 0 , 1 } X. ( 0 ..^ N ) ) | E. x e. ( 0 ..^ N ) ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } ) |
4 |
|
eqid |
|- ( 1 ..^ ( |^ ` ( N / 2 ) ) ) = ( 1 ..^ ( |^ ` ( N / 2 ) ) ) |
5 |
|
eqid |
|- ( 0 ..^ N ) = ( 0 ..^ N ) |
6 |
4 5
|
gpgusgralem |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> { e e. ~P ( { 0 , 1 } X. ( 0 ..^ N ) ) | E. x e. ( 0 ..^ N ) ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } C_ { p e. ~P ( { 0 , 1 } X. ( 0 ..^ N ) ) | ( # ` p ) = 2 } ) |
7 |
|
f1ss |
|- ( ( ( _I |` { e e. ~P ( { 0 , 1 } X. ( 0 ..^ N ) ) | E. x e. ( 0 ..^ N ) ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } ) : { e e. ~P ( { 0 , 1 } X. ( 0 ..^ N ) ) | E. x e. ( 0 ..^ N ) ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } -1-1-> { e e. ~P ( { 0 , 1 } X. ( 0 ..^ N ) ) | E. x e. ( 0 ..^ N ) ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } /\ { e e. ~P ( { 0 , 1 } X. ( 0 ..^ N ) ) | E. x e. ( 0 ..^ N ) ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } C_ { p e. ~P ( { 0 , 1 } X. ( 0 ..^ N ) ) | ( # ` p ) = 2 } ) -> ( _I |` { e e. ~P ( { 0 , 1 } X. ( 0 ..^ N ) ) | E. x e. ( 0 ..^ N ) ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } ) : { e e. ~P ( { 0 , 1 } X. ( 0 ..^ N ) ) | E. x e. ( 0 ..^ N ) ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } -1-1-> { p e. ~P ( { 0 , 1 } X. ( 0 ..^ N ) ) | ( # ` p ) = 2 } ) |
8 |
3 6 7
|
syl2anc |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> ( _I |` { e e. ~P ( { 0 , 1 } X. ( 0 ..^ N ) ) | E. x e. ( 0 ..^ N ) ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } ) : { e e. ~P ( { 0 , 1 } X. ( 0 ..^ N ) ) | E. x e. ( 0 ..^ N ) ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } -1-1-> { p e. ~P ( { 0 , 1 } X. ( 0 ..^ N ) ) | ( # ` p ) = 2 } ) |
9 |
|
eluzge3nn |
|- ( N e. ( ZZ>= ` 3 ) -> N e. NN ) |
10 |
4 5
|
gpgiedg |
|- ( ( N e. NN /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> ( iEdg ` ( N gPetersenGr K ) ) = ( _I |` { e e. ~P ( { 0 , 1 } X. ( 0 ..^ N ) ) | E. x e. ( 0 ..^ N ) ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } ) ) |
11 |
9 10
|
sylan |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> ( iEdg ` ( N gPetersenGr K ) ) = ( _I |` { e e. ~P ( { 0 , 1 } X. ( 0 ..^ N ) ) | E. x e. ( 0 ..^ N ) ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } ) ) |
12 |
11
|
dmeqd |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> dom ( iEdg ` ( N gPetersenGr K ) ) = dom ( _I |` { e e. ~P ( { 0 , 1 } X. ( 0 ..^ N ) ) | E. x e. ( 0 ..^ N ) ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } ) ) |
13 |
|
dmresi |
|- dom ( _I |` { e e. ~P ( { 0 , 1 } X. ( 0 ..^ N ) ) | E. x e. ( 0 ..^ N ) ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } ) = { e e. ~P ( { 0 , 1 } X. ( 0 ..^ N ) ) | E. x e. ( 0 ..^ N ) ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } |
14 |
12 13
|
eqtrdi |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> dom ( iEdg ` ( N gPetersenGr K ) ) = { e e. ~P ( { 0 , 1 } X. ( 0 ..^ N ) ) | E. x e. ( 0 ..^ N ) ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } ) |
15 |
4 5
|
gpgvtx |
|- ( ( N e. NN /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> ( Vtx ` ( N gPetersenGr K ) ) = ( { 0 , 1 } X. ( 0 ..^ N ) ) ) |
16 |
9 15
|
sylan |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> ( Vtx ` ( N gPetersenGr K ) ) = ( { 0 , 1 } X. ( 0 ..^ N ) ) ) |
17 |
16
|
pweqd |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> ~P ( Vtx ` ( N gPetersenGr K ) ) = ~P ( { 0 , 1 } X. ( 0 ..^ N ) ) ) |
18 |
17
|
rabeqdv |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> { p e. ~P ( Vtx ` ( N gPetersenGr K ) ) | ( # ` p ) = 2 } = { p e. ~P ( { 0 , 1 } X. ( 0 ..^ N ) ) | ( # ` p ) = 2 } ) |
19 |
11 14 18
|
f1eq123d |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> ( ( iEdg ` ( N gPetersenGr K ) ) : dom ( iEdg ` ( N gPetersenGr K ) ) -1-1-> { p e. ~P ( Vtx ` ( N gPetersenGr K ) ) | ( # ` p ) = 2 } <-> ( _I |` { e e. ~P ( { 0 , 1 } X. ( 0 ..^ N ) ) | E. x e. ( 0 ..^ N ) ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } ) : { e e. ~P ( { 0 , 1 } X. ( 0 ..^ N ) ) | E. x e. ( 0 ..^ N ) ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } -1-1-> { p e. ~P ( { 0 , 1 } X. ( 0 ..^ N ) ) | ( # ` p ) = 2 } ) ) |
20 |
8 19
|
mpbird |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> ( iEdg ` ( N gPetersenGr K ) ) : dom ( iEdg ` ( N gPetersenGr K ) ) -1-1-> { p e. ~P ( Vtx ` ( N gPetersenGr K ) ) | ( # ` p ) = 2 } ) |
21 |
|
ovex |
|- ( N gPetersenGr K ) e. _V |
22 |
|
eqid |
|- ( Vtx ` ( N gPetersenGr K ) ) = ( Vtx ` ( N gPetersenGr K ) ) |
23 |
|
eqid |
|- ( iEdg ` ( N gPetersenGr K ) ) = ( iEdg ` ( N gPetersenGr K ) ) |
24 |
22 23
|
isusgrs |
|- ( ( N gPetersenGr K ) e. _V -> ( ( N gPetersenGr K ) e. USGraph <-> ( iEdg ` ( N gPetersenGr K ) ) : dom ( iEdg ` ( N gPetersenGr K ) ) -1-1-> { p e. ~P ( Vtx ` ( N gPetersenGr K ) ) | ( # ` p ) = 2 } ) ) |
25 |
21 24
|
mp1i |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> ( ( N gPetersenGr K ) e. USGraph <-> ( iEdg ` ( N gPetersenGr K ) ) : dom ( iEdg ` ( N gPetersenGr K ) ) -1-1-> { p e. ~P ( Vtx ` ( N gPetersenGr K ) ) | ( # ` p ) = 2 } ) ) |
26 |
20 25
|
mpbird |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> ( N gPetersenGr K ) e. USGraph ) |