| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1zzd |
|- ( N e. ( ZZ>= ` 3 ) -> 1 e. ZZ ) |
| 2 |
|
eluzelre |
|- ( N e. ( ZZ>= ` 3 ) -> N e. RR ) |
| 3 |
|
2re |
|- 2 e. RR |
| 4 |
3
|
a1i |
|- ( N e. ( ZZ>= ` 3 ) -> 2 e. RR ) |
| 5 |
|
2ne0 |
|- 2 =/= 0 |
| 6 |
5
|
a1i |
|- ( N e. ( ZZ>= ` 3 ) -> 2 =/= 0 ) |
| 7 |
2 4 6
|
3jca |
|- ( N e. ( ZZ>= ` 3 ) -> ( N e. RR /\ 2 e. RR /\ 2 =/= 0 ) ) |
| 8 |
|
redivcl |
|- ( ( N e. RR /\ 2 e. RR /\ 2 =/= 0 ) -> ( N / 2 ) e. RR ) |
| 9 |
7 8
|
syl |
|- ( N e. ( ZZ>= ` 3 ) -> ( N / 2 ) e. RR ) |
| 10 |
9
|
ceilcld |
|- ( N e. ( ZZ>= ` 3 ) -> ( |^ ` ( N / 2 ) ) e. ZZ ) |
| 11 |
|
1red |
|- ( N e. ( ZZ>= ` 3 ) -> 1 e. RR ) |
| 12 |
8
|
ceilcld |
|- ( ( N e. RR /\ 2 e. RR /\ 2 =/= 0 ) -> ( |^ ` ( N / 2 ) ) e. ZZ ) |
| 13 |
7 12
|
syl |
|- ( N e. ( ZZ>= ` 3 ) -> ( |^ ` ( N / 2 ) ) e. ZZ ) |
| 14 |
13
|
zred |
|- ( N e. ( ZZ>= ` 3 ) -> ( |^ ` ( N / 2 ) ) e. RR ) |
| 15 |
|
1lt2 |
|- 1 < 2 |
| 16 |
15
|
a1i |
|- ( N e. ( ZZ>= ` 3 ) -> 1 < 2 ) |
| 17 |
|
2ltceilhalf |
|- ( N e. ( ZZ>= ` 3 ) -> 2 <_ ( |^ ` ( N / 2 ) ) ) |
| 18 |
11 4 14 16 17
|
ltletrd |
|- ( N e. ( ZZ>= ` 3 ) -> 1 < ( |^ ` ( N / 2 ) ) ) |
| 19 |
|
fzolb |
|- ( 1 e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) <-> ( 1 e. ZZ /\ ( |^ ` ( N / 2 ) ) e. ZZ /\ 1 < ( |^ ` ( N / 2 ) ) ) ) |
| 20 |
1 10 18 19
|
syl3anbrc |
|- ( N e. ( ZZ>= ` 3 ) -> 1 e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) |
| 21 |
|
gpgusgra |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 1 e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) ) -> ( N gPetersenGr 1 ) e. USGraph ) |
| 22 |
20 21
|
mpdan |
|- ( N e. ( ZZ>= ` 3 ) -> ( N gPetersenGr 1 ) e. USGraph ) |