Step |
Hyp |
Ref |
Expression |
1 |
|
uzp1 |
|- ( N e. ( ZZ>= ` 3 ) -> ( N = 3 \/ N e. ( ZZ>= ` ( 3 + 1 ) ) ) ) |
2 |
|
ex-ceil |
|- ( ( |^ ` ( 3 / 2 ) ) = 2 /\ ( |^ ` -u ( 3 / 2 ) ) = -u 1 ) |
3 |
|
2re |
|- 2 e. RR |
4 |
3
|
leidi |
|- 2 <_ 2 |
5 |
|
breq2 |
|- ( ( |^ ` ( 3 / 2 ) ) = 2 -> ( 2 <_ ( |^ ` ( 3 / 2 ) ) <-> 2 <_ 2 ) ) |
6 |
4 5
|
mpbiri |
|- ( ( |^ ` ( 3 / 2 ) ) = 2 -> 2 <_ ( |^ ` ( 3 / 2 ) ) ) |
7 |
6
|
adantr |
|- ( ( ( |^ ` ( 3 / 2 ) ) = 2 /\ ( |^ ` -u ( 3 / 2 ) ) = -u 1 ) -> 2 <_ ( |^ ` ( 3 / 2 ) ) ) |
8 |
2 7
|
ax-mp |
|- 2 <_ ( |^ ` ( 3 / 2 ) ) |
9 |
|
fvoveq1 |
|- ( N = 3 -> ( |^ ` ( N / 2 ) ) = ( |^ ` ( 3 / 2 ) ) ) |
10 |
8 9
|
breqtrrid |
|- ( N = 3 -> 2 <_ ( |^ ` ( N / 2 ) ) ) |
11 |
3
|
a1i |
|- ( N e. ( ZZ>= ` 4 ) -> 2 e. RR ) |
12 |
|
eluzelre |
|- ( N e. ( ZZ>= ` 4 ) -> N e. RR ) |
13 |
12
|
rehalfcld |
|- ( N e. ( ZZ>= ` 4 ) -> ( N / 2 ) e. RR ) |
14 |
13
|
ceilcld |
|- ( N e. ( ZZ>= ` 4 ) -> ( |^ ` ( N / 2 ) ) e. ZZ ) |
15 |
14
|
zred |
|- ( N e. ( ZZ>= ` 4 ) -> ( |^ ` ( N / 2 ) ) e. RR ) |
16 |
|
2t2e4 |
|- ( 2 x. 2 ) = 4 |
17 |
|
eluzle |
|- ( N e. ( ZZ>= ` 4 ) -> 4 <_ N ) |
18 |
16 17
|
eqbrtrid |
|- ( N e. ( ZZ>= ` 4 ) -> ( 2 x. 2 ) <_ N ) |
19 |
|
2pos |
|- 0 < 2 |
20 |
3 19
|
pm3.2i |
|- ( 2 e. RR /\ 0 < 2 ) |
21 |
20
|
a1i |
|- ( N e. ( ZZ>= ` 4 ) -> ( 2 e. RR /\ 0 < 2 ) ) |
22 |
|
lemuldiv |
|- ( ( 2 e. RR /\ N e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( 2 x. 2 ) <_ N <-> 2 <_ ( N / 2 ) ) ) |
23 |
3 12 21 22
|
mp3an2i |
|- ( N e. ( ZZ>= ` 4 ) -> ( ( 2 x. 2 ) <_ N <-> 2 <_ ( N / 2 ) ) ) |
24 |
18 23
|
mpbid |
|- ( N e. ( ZZ>= ` 4 ) -> 2 <_ ( N / 2 ) ) |
25 |
13
|
ceilged |
|- ( N e. ( ZZ>= ` 4 ) -> ( N / 2 ) <_ ( |^ ` ( N / 2 ) ) ) |
26 |
11 13 15 24 25
|
letrd |
|- ( N e. ( ZZ>= ` 4 ) -> 2 <_ ( |^ ` ( N / 2 ) ) ) |
27 |
|
3p1e4 |
|- ( 3 + 1 ) = 4 |
28 |
27
|
fveq2i |
|- ( ZZ>= ` ( 3 + 1 ) ) = ( ZZ>= ` 4 ) |
29 |
26 28
|
eleq2s |
|- ( N e. ( ZZ>= ` ( 3 + 1 ) ) -> 2 <_ ( |^ ` ( N / 2 ) ) ) |
30 |
10 29
|
jaoi |
|- ( ( N = 3 \/ N e. ( ZZ>= ` ( 3 + 1 ) ) ) -> 2 <_ ( |^ ` ( N / 2 ) ) ) |
31 |
1 30
|
syl |
|- ( N e. ( ZZ>= ` 3 ) -> 2 <_ ( |^ ` ( N / 2 ) ) ) |