Step |
Hyp |
Ref |
Expression |
1 |
|
uzp1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → ( 𝑁 = 3 ∨ 𝑁 ∈ ( ℤ≥ ‘ ( 3 + 1 ) ) ) ) |
2 |
|
ex-ceil |
⊢ ( ( ⌈ ‘ ( 3 / 2 ) ) = 2 ∧ ( ⌈ ‘ - ( 3 / 2 ) ) = - 1 ) |
3 |
|
2re |
⊢ 2 ∈ ℝ |
4 |
3
|
leidi |
⊢ 2 ≤ 2 |
5 |
|
breq2 |
⊢ ( ( ⌈ ‘ ( 3 / 2 ) ) = 2 → ( 2 ≤ ( ⌈ ‘ ( 3 / 2 ) ) ↔ 2 ≤ 2 ) ) |
6 |
4 5
|
mpbiri |
⊢ ( ( ⌈ ‘ ( 3 / 2 ) ) = 2 → 2 ≤ ( ⌈ ‘ ( 3 / 2 ) ) ) |
7 |
6
|
adantr |
⊢ ( ( ( ⌈ ‘ ( 3 / 2 ) ) = 2 ∧ ( ⌈ ‘ - ( 3 / 2 ) ) = - 1 ) → 2 ≤ ( ⌈ ‘ ( 3 / 2 ) ) ) |
8 |
2 7
|
ax-mp |
⊢ 2 ≤ ( ⌈ ‘ ( 3 / 2 ) ) |
9 |
|
fvoveq1 |
⊢ ( 𝑁 = 3 → ( ⌈ ‘ ( 𝑁 / 2 ) ) = ( ⌈ ‘ ( 3 / 2 ) ) ) |
10 |
8 9
|
breqtrrid |
⊢ ( 𝑁 = 3 → 2 ≤ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) |
11 |
3
|
a1i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 4 ) → 2 ∈ ℝ ) |
12 |
|
eluzelre |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 4 ) → 𝑁 ∈ ℝ ) |
13 |
12
|
rehalfcld |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 4 ) → ( 𝑁 / 2 ) ∈ ℝ ) |
14 |
13
|
ceilcld |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 4 ) → ( ⌈ ‘ ( 𝑁 / 2 ) ) ∈ ℤ ) |
15 |
14
|
zred |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 4 ) → ( ⌈ ‘ ( 𝑁 / 2 ) ) ∈ ℝ ) |
16 |
|
2t2e4 |
⊢ ( 2 · 2 ) = 4 |
17 |
|
eluzle |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 4 ) → 4 ≤ 𝑁 ) |
18 |
16 17
|
eqbrtrid |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 4 ) → ( 2 · 2 ) ≤ 𝑁 ) |
19 |
|
2pos |
⊢ 0 < 2 |
20 |
3 19
|
pm3.2i |
⊢ ( 2 ∈ ℝ ∧ 0 < 2 ) |
21 |
20
|
a1i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 4 ) → ( 2 ∈ ℝ ∧ 0 < 2 ) ) |
22 |
|
lemuldiv |
⊢ ( ( 2 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( 2 · 2 ) ≤ 𝑁 ↔ 2 ≤ ( 𝑁 / 2 ) ) ) |
23 |
3 12 21 22
|
mp3an2i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 4 ) → ( ( 2 · 2 ) ≤ 𝑁 ↔ 2 ≤ ( 𝑁 / 2 ) ) ) |
24 |
18 23
|
mpbid |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 4 ) → 2 ≤ ( 𝑁 / 2 ) ) |
25 |
13
|
ceilged |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 4 ) → ( 𝑁 / 2 ) ≤ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) |
26 |
11 13 15 24 25
|
letrd |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 4 ) → 2 ≤ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) |
27 |
|
3p1e4 |
⊢ ( 3 + 1 ) = 4 |
28 |
27
|
fveq2i |
⊢ ( ℤ≥ ‘ ( 3 + 1 ) ) = ( ℤ≥ ‘ 4 ) |
29 |
26 28
|
eleq2s |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ( 3 + 1 ) ) → 2 ≤ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) |
30 |
10 29
|
jaoi |
⊢ ( ( 𝑁 = 3 ∨ 𝑁 ∈ ( ℤ≥ ‘ ( 3 + 1 ) ) ) → 2 ≤ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) |
31 |
1 30
|
syl |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 2 ≤ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) |