| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ex-fl |
⊢ ( ( ⌊ ‘ ( 3 / 2 ) ) = 1 ∧ ( ⌊ ‘ - ( 3 / 2 ) ) = - 2 ) |
| 2 |
|
3re |
⊢ 3 ∈ ℝ |
| 3 |
2
|
rehalfcli |
⊢ ( 3 / 2 ) ∈ ℝ |
| 4 |
3
|
renegcli |
⊢ - ( 3 / 2 ) ∈ ℝ |
| 5 |
|
ceilval |
⊢ ( - ( 3 / 2 ) ∈ ℝ → ( ⌈ ‘ - ( 3 / 2 ) ) = - ( ⌊ ‘ - - ( 3 / 2 ) ) ) |
| 6 |
4 5
|
ax-mp |
⊢ ( ⌈ ‘ - ( 3 / 2 ) ) = - ( ⌊ ‘ - - ( 3 / 2 ) ) |
| 7 |
3
|
recni |
⊢ ( 3 / 2 ) ∈ ℂ |
| 8 |
7
|
negnegi |
⊢ - - ( 3 / 2 ) = ( 3 / 2 ) |
| 9 |
8
|
eqcomi |
⊢ ( 3 / 2 ) = - - ( 3 / 2 ) |
| 10 |
9
|
fveq2i |
⊢ ( ⌊ ‘ ( 3 / 2 ) ) = ( ⌊ ‘ - - ( 3 / 2 ) ) |
| 11 |
10
|
eqeq1i |
⊢ ( ( ⌊ ‘ ( 3 / 2 ) ) = 1 ↔ ( ⌊ ‘ - - ( 3 / 2 ) ) = 1 ) |
| 12 |
11
|
biimpi |
⊢ ( ( ⌊ ‘ ( 3 / 2 ) ) = 1 → ( ⌊ ‘ - - ( 3 / 2 ) ) = 1 ) |
| 13 |
12
|
negeqd |
⊢ ( ( ⌊ ‘ ( 3 / 2 ) ) = 1 → - ( ⌊ ‘ - - ( 3 / 2 ) ) = - 1 ) |
| 14 |
6 13
|
eqtrid |
⊢ ( ( ⌊ ‘ ( 3 / 2 ) ) = 1 → ( ⌈ ‘ - ( 3 / 2 ) ) = - 1 ) |
| 15 |
|
ceilval |
⊢ ( ( 3 / 2 ) ∈ ℝ → ( ⌈ ‘ ( 3 / 2 ) ) = - ( ⌊ ‘ - ( 3 / 2 ) ) ) |
| 16 |
3 15
|
ax-mp |
⊢ ( ⌈ ‘ ( 3 / 2 ) ) = - ( ⌊ ‘ - ( 3 / 2 ) ) |
| 17 |
|
negeq |
⊢ ( ( ⌊ ‘ - ( 3 / 2 ) ) = - 2 → - ( ⌊ ‘ - ( 3 / 2 ) ) = - - 2 ) |
| 18 |
|
2cn |
⊢ 2 ∈ ℂ |
| 19 |
18
|
negnegi |
⊢ - - 2 = 2 |
| 20 |
17 19
|
eqtrdi |
⊢ ( ( ⌊ ‘ - ( 3 / 2 ) ) = - 2 → - ( ⌊ ‘ - ( 3 / 2 ) ) = 2 ) |
| 21 |
16 20
|
eqtrid |
⊢ ( ( ⌊ ‘ - ( 3 / 2 ) ) = - 2 → ( ⌈ ‘ ( 3 / 2 ) ) = 2 ) |
| 22 |
14 21
|
anim12ci |
⊢ ( ( ( ⌊ ‘ ( 3 / 2 ) ) = 1 ∧ ( ⌊ ‘ - ( 3 / 2 ) ) = - 2 ) → ( ( ⌈ ‘ ( 3 / 2 ) ) = 2 ∧ ( ⌈ ‘ - ( 3 / 2 ) ) = - 1 ) ) |
| 23 |
1 22
|
ax-mp |
⊢ ( ( ⌈ ‘ ( 3 / 2 ) ) = 2 ∧ ( ⌈ ‘ - ( 3 / 2 ) ) = - 1 ) |