Step |
Hyp |
Ref |
Expression |
1 |
|
3p2e5 |
⊢ ( 3 + 2 ) = 5 |
2 |
1
|
eqcomi |
⊢ 5 = ( 3 + 2 ) |
3 |
2
|
oveq1i |
⊢ ( 5 mod 3 ) = ( ( 3 + 2 ) mod 3 ) |
4 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
5 |
|
3nn |
⊢ 3 ∈ ℕ |
6 |
|
2lt3 |
⊢ 2 < 3 |
7 |
|
addmodid |
⊢ ( ( 2 ∈ ℕ0 ∧ 3 ∈ ℕ ∧ 2 < 3 ) → ( ( 3 + 2 ) mod 3 ) = 2 ) |
8 |
4 5 6 7
|
mp3an |
⊢ ( ( 3 + 2 ) mod 3 ) = 2 |
9 |
3 8
|
eqtri |
⊢ ( 5 mod 3 ) = 2 |
10 |
|
2re |
⊢ 2 ∈ ℝ |
11 |
|
2lt7 |
⊢ 2 < 7 |
12 |
10 11
|
ltneii |
⊢ 2 ≠ 7 |
13 |
|
2nn |
⊢ 2 ∈ ℕ |
14 |
|
1lt2 |
⊢ 1 < 2 |
15 |
|
eluz2b2 |
⊢ ( 2 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 2 ∈ ℕ ∧ 1 < 2 ) ) |
16 |
13 14 15
|
mpbir2an |
⊢ 2 ∈ ( ℤ≥ ‘ 2 ) |
17 |
|
7prm |
⊢ 7 ∈ ℙ |
18 |
|
dvdsprm |
⊢ ( ( 2 ∈ ( ℤ≥ ‘ 2 ) ∧ 7 ∈ ℙ ) → ( 2 ∥ 7 ↔ 2 = 7 ) ) |
19 |
16 17 18
|
mp2an |
⊢ ( 2 ∥ 7 ↔ 2 = 7 ) |
20 |
12 19
|
nemtbir |
⊢ ¬ 2 ∥ 7 |
21 |
|
2z |
⊢ 2 ∈ ℤ |
22 |
|
7nn |
⊢ 7 ∈ ℕ |
23 |
22
|
nnzi |
⊢ 7 ∈ ℤ |
24 |
|
dvdsnegb |
⊢ ( ( 2 ∈ ℤ ∧ 7 ∈ ℤ ) → ( 2 ∥ 7 ↔ 2 ∥ - 7 ) ) |
25 |
21 23 24
|
mp2an |
⊢ ( 2 ∥ 7 ↔ 2 ∥ - 7 ) |
26 |
20 25
|
mtbi |
⊢ ¬ 2 ∥ - 7 |
27 |
|
znegcl |
⊢ ( 7 ∈ ℤ → - 7 ∈ ℤ ) |
28 |
|
mod2eq1n2dvds |
⊢ ( - 7 ∈ ℤ → ( ( - 7 mod 2 ) = 1 ↔ ¬ 2 ∥ - 7 ) ) |
29 |
23 27 28
|
mp2b |
⊢ ( ( - 7 mod 2 ) = 1 ↔ ¬ 2 ∥ - 7 ) |
30 |
26 29
|
mpbir |
⊢ ( - 7 mod 2 ) = 1 |
31 |
9 30
|
pm3.2i |
⊢ ( ( 5 mod 3 ) = 2 ∧ ( - 7 mod 2 ) = 1 ) |