Metamath Proof Explorer


Theorem ex-mod

Description: Example for df-mod . (Contributed by AV, 3-Sep-2021)

Ref Expression
Assertion ex-mod 5mod3=2-7mod2=1

Proof

Step Hyp Ref Expression
1 3p2e5 3+2=5
2 1 eqcomi 5=3+2
3 2 oveq1i 5mod3=3+2mod3
4 2nn0 20
5 3nn 3
6 2lt3 2<3
7 addmodid 2032<33+2mod3=2
8 4 5 6 7 mp3an 3+2mod3=2
9 3 8 eqtri 5mod3=2
10 2re 2
11 2lt7 2<7
12 10 11 ltneii 27
13 2nn 2
14 1lt2 1<2
15 eluz2b2 2221<2
16 13 14 15 mpbir2an 22
17 7prm 7
18 dvdsprm 227272=7
19 16 17 18 mp2an 272=7
20 12 19 nemtbir ¬27
21 2z 2
22 7nn 7
23 22 nnzi 7
24 dvdsnegb 27272-7
25 21 23 24 mp2an 272-7
26 20 25 mtbi ¬2-7
27 znegcl 77
28 mod2eq1n2dvds 7-7mod2=1¬2-7
29 23 27 28 mp2b -7mod2=1¬2-7
30 26 29 mpbir -7mod2=1
31 9 30 pm3.2i 5mod3=2-7mod2=1