| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ex-fl |
|- ( ( |_ ` ( 3 / 2 ) ) = 1 /\ ( |_ ` -u ( 3 / 2 ) ) = -u 2 ) |
| 2 |
|
3re |
|- 3 e. RR |
| 3 |
2
|
rehalfcli |
|- ( 3 / 2 ) e. RR |
| 4 |
3
|
renegcli |
|- -u ( 3 / 2 ) e. RR |
| 5 |
|
ceilval |
|- ( -u ( 3 / 2 ) e. RR -> ( |^ ` -u ( 3 / 2 ) ) = -u ( |_ ` -u -u ( 3 / 2 ) ) ) |
| 6 |
4 5
|
ax-mp |
|- ( |^ ` -u ( 3 / 2 ) ) = -u ( |_ ` -u -u ( 3 / 2 ) ) |
| 7 |
3
|
recni |
|- ( 3 / 2 ) e. CC |
| 8 |
7
|
negnegi |
|- -u -u ( 3 / 2 ) = ( 3 / 2 ) |
| 9 |
8
|
eqcomi |
|- ( 3 / 2 ) = -u -u ( 3 / 2 ) |
| 10 |
9
|
fveq2i |
|- ( |_ ` ( 3 / 2 ) ) = ( |_ ` -u -u ( 3 / 2 ) ) |
| 11 |
10
|
eqeq1i |
|- ( ( |_ ` ( 3 / 2 ) ) = 1 <-> ( |_ ` -u -u ( 3 / 2 ) ) = 1 ) |
| 12 |
11
|
biimpi |
|- ( ( |_ ` ( 3 / 2 ) ) = 1 -> ( |_ ` -u -u ( 3 / 2 ) ) = 1 ) |
| 13 |
12
|
negeqd |
|- ( ( |_ ` ( 3 / 2 ) ) = 1 -> -u ( |_ ` -u -u ( 3 / 2 ) ) = -u 1 ) |
| 14 |
6 13
|
eqtrid |
|- ( ( |_ ` ( 3 / 2 ) ) = 1 -> ( |^ ` -u ( 3 / 2 ) ) = -u 1 ) |
| 15 |
|
ceilval |
|- ( ( 3 / 2 ) e. RR -> ( |^ ` ( 3 / 2 ) ) = -u ( |_ ` -u ( 3 / 2 ) ) ) |
| 16 |
3 15
|
ax-mp |
|- ( |^ ` ( 3 / 2 ) ) = -u ( |_ ` -u ( 3 / 2 ) ) |
| 17 |
|
negeq |
|- ( ( |_ ` -u ( 3 / 2 ) ) = -u 2 -> -u ( |_ ` -u ( 3 / 2 ) ) = -u -u 2 ) |
| 18 |
|
2cn |
|- 2 e. CC |
| 19 |
18
|
negnegi |
|- -u -u 2 = 2 |
| 20 |
17 19
|
eqtrdi |
|- ( ( |_ ` -u ( 3 / 2 ) ) = -u 2 -> -u ( |_ ` -u ( 3 / 2 ) ) = 2 ) |
| 21 |
16 20
|
eqtrid |
|- ( ( |_ ` -u ( 3 / 2 ) ) = -u 2 -> ( |^ ` ( 3 / 2 ) ) = 2 ) |
| 22 |
14 21
|
anim12ci |
|- ( ( ( |_ ` ( 3 / 2 ) ) = 1 /\ ( |_ ` -u ( 3 / 2 ) ) = -u 2 ) -> ( ( |^ ` ( 3 / 2 ) ) = 2 /\ ( |^ ` -u ( 3 / 2 ) ) = -u 1 ) ) |
| 23 |
1 22
|
ax-mp |
|- ( ( |^ ` ( 3 / 2 ) ) = 2 /\ ( |^ ` -u ( 3 / 2 ) ) = -u 1 ) |