Metamath Proof Explorer


Theorem ceilhalfgt1

Description: The ceiling of half of an integer greater than two is greater than one. (Contributed by AV, 2-Nov-2025)

Ref Expression
Assertion ceilhalfgt1 ( 𝑁 ∈ ( ℤ ‘ 3 ) → 1 < ( ⌈ ‘ ( 𝑁 / 2 ) ) )

Proof

Step Hyp Ref Expression
1 1red ( 𝑁 ∈ ( ℤ ‘ 3 ) → 1 ∈ ℝ )
2 2re 2 ∈ ℝ
3 2 a1i ( 𝑁 ∈ ( ℤ ‘ 3 ) → 2 ∈ ℝ )
4 eluzelre ( 𝑁 ∈ ( ℤ ‘ 3 ) → 𝑁 ∈ ℝ )
5 4 rehalfcld ( 𝑁 ∈ ( ℤ ‘ 3 ) → ( 𝑁 / 2 ) ∈ ℝ )
6 5 ceilcld ( 𝑁 ∈ ( ℤ ‘ 3 ) → ( ⌈ ‘ ( 𝑁 / 2 ) ) ∈ ℤ )
7 6 zred ( 𝑁 ∈ ( ℤ ‘ 3 ) → ( ⌈ ‘ ( 𝑁 / 2 ) ) ∈ ℝ )
8 1lt2 1 < 2
9 8 a1i ( 𝑁 ∈ ( ℤ ‘ 3 ) → 1 < 2 )
10 2ltceilhalf ( 𝑁 ∈ ( ℤ ‘ 3 ) → 2 ≤ ( ⌈ ‘ ( 𝑁 / 2 ) ) )
11 1 3 7 9 10 ltletrd ( 𝑁 ∈ ( ℤ ‘ 3 ) → 1 < ( ⌈ ‘ ( 𝑁 / 2 ) ) )