Metamath Proof Explorer


Theorem ceilhalfgt1

Description: The ceiling of half of an integer greater than two is greater than one. (Contributed by AV, 2-Nov-2025)

Ref Expression
Assertion ceilhalfgt1
|- ( N e. ( ZZ>= ` 3 ) -> 1 < ( |^ ` ( N / 2 ) ) )

Proof

Step Hyp Ref Expression
1 1red
 |-  ( N e. ( ZZ>= ` 3 ) -> 1 e. RR )
2 2re
 |-  2 e. RR
3 2 a1i
 |-  ( N e. ( ZZ>= ` 3 ) -> 2 e. RR )
4 eluzelre
 |-  ( N e. ( ZZ>= ` 3 ) -> N e. RR )
5 4 rehalfcld
 |-  ( N e. ( ZZ>= ` 3 ) -> ( N / 2 ) e. RR )
6 5 ceilcld
 |-  ( N e. ( ZZ>= ` 3 ) -> ( |^ ` ( N / 2 ) ) e. ZZ )
7 6 zred
 |-  ( N e. ( ZZ>= ` 3 ) -> ( |^ ` ( N / 2 ) ) e. RR )
8 1lt2
 |-  1 < 2
9 8 a1i
 |-  ( N e. ( ZZ>= ` 3 ) -> 1 < 2 )
10 2ltceilhalf
 |-  ( N e. ( ZZ>= ` 3 ) -> 2 <_ ( |^ ` ( N / 2 ) ) )
11 1 3 7 9 10 ltletrd
 |-  ( N e. ( ZZ>= ` 3 ) -> 1 < ( |^ ` ( N / 2 ) ) )