Metamath Proof Explorer


Theorem ceilhalfelfzo1

Description: A positive integer less than (the ceiling of) half of another integer is in the half-open range of positive integers up to the other integer. (Contributed by AV, 7-Sep-2025)

Ref Expression
Hypothesis ceilhalfelfzo1.j
|- J = ( 1 ..^ ( |^ ` ( N / 2 ) ) )
Assertion ceilhalfelfzo1
|- ( N e. NN -> ( K e. J -> K e. ( 1 ..^ N ) ) )

Proof

Step Hyp Ref Expression
1 ceilhalfelfzo1.j
 |-  J = ( 1 ..^ ( |^ ` ( N / 2 ) ) )
2 1 eleq2i
 |-  ( K e. J <-> K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) )
3 nnre
 |-  ( N e. NN -> N e. RR )
4 3 rehalfcld
 |-  ( N e. NN -> ( N / 2 ) e. RR )
5 4 ceilcld
 |-  ( N e. NN -> ( |^ ` ( N / 2 ) ) e. ZZ )
6 nnz
 |-  ( N e. NN -> N e. ZZ )
7 nnnn0
 |-  ( N e. NN -> N e. NN0 )
8 2nn
 |-  2 e. NN
9 nn0ledivnn
 |-  ( ( N e. NN0 /\ 2 e. NN ) -> ( N / 2 ) <_ N )
10 7 8 9 sylancl
 |-  ( N e. NN -> ( N / 2 ) <_ N )
11 ceille
 |-  ( ( ( N / 2 ) e. RR /\ N e. ZZ /\ ( N / 2 ) <_ N ) -> ( |^ ` ( N / 2 ) ) <_ N )
12 4 6 10 11 syl3anc
 |-  ( N e. NN -> ( |^ ` ( N / 2 ) ) <_ N )
13 eluz2
 |-  ( N e. ( ZZ>= ` ( |^ ` ( N / 2 ) ) ) <-> ( ( |^ ` ( N / 2 ) ) e. ZZ /\ N e. ZZ /\ ( |^ ` ( N / 2 ) ) <_ N ) )
14 5 6 12 13 syl3anbrc
 |-  ( N e. NN -> N e. ( ZZ>= ` ( |^ ` ( N / 2 ) ) ) )
15 fzoss2
 |-  ( N e. ( ZZ>= ` ( |^ ` ( N / 2 ) ) ) -> ( 1 ..^ ( |^ ` ( N / 2 ) ) ) C_ ( 1 ..^ N ) )
16 14 15 syl
 |-  ( N e. NN -> ( 1 ..^ ( |^ ` ( N / 2 ) ) ) C_ ( 1 ..^ N ) )
17 16 sseld
 |-  ( N e. NN -> ( K e. ( 1 ..^ ( |^ ` ( N / 2 ) ) ) -> K e. ( 1 ..^ N ) ) )
18 2 17 biimtrid
 |-  ( N e. NN -> ( K e. J -> K e. ( 1 ..^ N ) ) )